• Title/Summary/Keyword: invertibility

Search Result 25, Processing Time 0.02 seconds

CHARACTERIZATIONS AND THE MOORE-PENROSE INVERSE OF HYPERGENERALIZED K-PROJECTORS

  • Tosic, Marina
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.501-510
    • /
    • 2014
  • We characterize hypergeneralized k-projectors (i.e., $A^k=A^{\dag}$). Also, some representation for the Moore-Penrose inverse of a linear combination of hypergeneralized k-projectors is found and the invertibility for some linear combinations of commuting hypergeneralized k-projectors is considered.

A NOTE ON PRÜFER SEMISTAR MULTIPLICATION DOMAINS

  • Picozza, Giampaolo
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1179-1192
    • /
    • 2009
  • In this note we give a new generalization of the notions of $Pr{\ddot{U}}fer$ domain and PvMD which uses quasi semistar invertibility, the "quasi P$\star$MD", and compare them with the P$\star$MD. We show in particular that the problem of when a quasi P$\star$MD is a P$\star$MD is strictly related to the problem of the descent to subrings of the P$\star$MD property and we give necessary and sufficient conditions.

ON THE SPECTRAL RADIUS AND INVERTIBILITY OF CERTAIN ELEMENTS IN BANACH ALGEBRA

  • Park, Kyon-Hong;Kim, Byung-Do
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.299-308
    • /
    • 1997
  • In this paper we show that the limit of a convergent in-vertible sequence in the set of invertible elements Inv(A) in a Banach algebra A under a certain conditions is invertible and we investigate some properties of the spectral radius of banach algebra with unit.

THE SOLUTIONS OF SOME OPERATOR EQUATIONS

  • Cvetkovic-Ilic, Dragana S.
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1417-1425
    • /
    • 2008
  • In this paper we consider the solvability and describe the set of the solutions of the operator equations $AX+X^{*}C=B$ and $AXB+B^{*}X^{*}A^{*}=C$. This generalizes the results of D. S. Djordjevic [Explicit solution of the operator equation $A^{*}X+X^{*}$A=B, J. Comput. Appl. Math. 200(2007), 701-704].

THE DRAZIN INVERSE OF THE SUM OF TWO PRODUCTS

  • Chrifi, Safae Alaoui;Tajmouati, Abdelaziz
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.705-718
    • /
    • 2022
  • In this paper, for bounded linear operators A, B, C satisfying [AB, B] = [BC, B] = [AB, BC] = 0 we study the Drazin invertibility of the sum of products formed by the three operators A, B and C. In particular, we give an explicit representation of the anti-commutator {A, B} = AB + BA. Also we give some conditions for which the sum A + C is Drazin invertible.

Lifting Implementation of Reversible Deinterlacer

  • Ishida, Takuma;Soyama, Tatsuumi;Muramatsu, Shogo;Kikuchi, Hisakazu;Kuge, Tetsuro
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.90-93
    • /
    • 2002
  • In this work, an efficient lifting implementation of invertible deinterlacing is proposed. The invertible deinterlacing is a technique developed for intra-frame-based video coding as a preprocessing. Unlike the conventional deinterlacing, it preserves the sampling density and has the invertibility. For a special selection of filters, it is shown that the deinterlacing can be implemented efficiently by an in-place computation. It is also shown that the deinterlacing can be combined with the lifting discrete wavelet transform (BWT) employed in JPEG2000. A bit modification of the original lifting DWT is shown to provide the simultaneous implementation of deinterlacing. This fact makes the proposed technique attractive for the application to Motion-JPEG2000. The inverse transform and the reversible lifting implementation are also discussed.

  • PDF

ERROR ESTIMATIES FOR A FREQUENCY-DOMAIN FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS WITH A NEUMANN BOUNDARY CONDITION

  • Lee, Jong-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.345-362
    • /
    • 1998
  • We introduce and anlyze a naturally parallelizable frequency-domain method for parabolic problems with a Neumann boundary condition. After taking the Fourier transformation of given equations in the space-time domain into the space-frequency domain, we solve an indefinite, complex elliptic problem for each frequency. Fourier inversion will then recover the solution of the original problem in the space-time domain. Existence and uniqueness of a solution of the transformed problem corresponding to each frequency is established. Fourier invertibility of the solution in the frequency-domain is also examined. Error estimates for a finite element approximation to solutions fo transformed problems and full error estimates for solving the given problem using a discrete Fourier inverse transform are given.

  • PDF

A FREQUENCY-DOMAIN METE10D FOR FINITE ELEMENT SOLUTIONS OF PARABOLIC PROBLEMS

  • Lee, Chang-Ock;Lee, Jongwoo;Sheen, Dongwoo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.589-606
    • /
    • 2002
  • We introduce and analyze a frequency-domain method for parabolic partial differential equations. The method is naturally parallelizable. After taking the Fourier transformation of given equations in the space-time domain into the space-frequency domain, we propose to solve an indefinite, complex elliptic problem for each frequency. Fourier inversion will then recover the solution in the space-time domain. Existence and uniqueness as well as error estimates are given. Fourier invertibility is also examined. Numerical experiments are presented.

CHARACTERIZATION OF TEMPERED EXPONENTIAL DICHOTOMIES

  • Barreira, Luis;Rijo, Joao;Valls, Claudia
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.171-194
    • /
    • 2020
  • For a nonautonomous dynamics defined by a sequence of bounded linear operators on a Banach space, we give a characterization of the existence of an exponential dichotomy with respect to a sequence of norms in terms of the invertibility of a certain linear operator between general admissible spaces. This notion of an exponential dichotomy contains as very special cases the notions of uniform, nonuniform and tempered exponential dichotomies. As applications, we detail the consequences of our results for the class of tempered exponential dichotomies, which are ubiquitous in the context of ergodic theory, and we show that the notion of an exponential dichotomy under sufficiently small parameterized perturbations persists and that their stable and unstable spaces are as regular as the perturbation.