KYUNGPOOK Math. J. 55(2015), 251-258
http://dx.doi.org/10.5666/KMJ.2015.55.2.251
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

Note on the Generalized Invertibility of $a-x y^{*}$

Fapeng Du*
Department of Mathematics, Southeast University, Nanjing, 211100, Jiangsu Province, P.R. China
Department of Mathematics, School of mathematical ξ Physical Sciences, Xuzhou Institute of Technology, Xuzhou, 221008, Jiangsu Province, P.R. China
e-mail: jsdfp@163.com
Yifeng Xue
Department of Mathematics, East China Normal University, Shanghai, 200241, P.R. China
e-mail: yfxue@math.ecnu.edu.cn

Abstract. Let \mathcal{A} be a unital C^{*}-algebra, a, x and y are elements in \mathcal{A}. In this paper, we present the expression of the Moore-Penrose inverse and the group inverse of $a-x y^{*}$ under the conditions $x=a a^{+} x, y^{*}=y^{*} a^{+} a$, respectively.

1. Introduction

Let \mathcal{A} be a C^{*}-algebra with unit 1 and $a \in \mathcal{A}$. The element $b \in \mathcal{A}$ which satisfied $a b a=a$ and $b a b=b$ is called the generalized inverse of a, denoted by a^{+}. The set of the elements which have generalized inverse in \mathcal{A}, denoted by $\operatorname{Gi}(\mathcal{A})$.

The Moore-Penrose inverse of a is denoted by a^{\dagger} and is the unique element to the following equations:

$$
a a^{\dagger} a=a, \quad a^{\dagger} a a^{\dagger}=a^{\dagger}, \quad\left(a a^{\dagger}\right)^{*}=a a^{\dagger}, \quad\left(a^{\dagger} a\right)^{*}=a^{\dagger} a .
$$

It is well known that $a \in \mathcal{A}$ has an Moore-Penrose inverse iff a is generalized invertible in \mathcal{A}.

[^0]The group inverse of an element $a \in \mathcal{A}$ is an unique element $b \in \mathcal{A}$ such that

$$
a b a=a, \quad b a b=b, \quad a b=b a .
$$

The Moore-Penrose inverse of $a-x y^{*}$ has many applications in statistics, networks, optimizations etc. (see [8],[9],[11]). Many authors have been studying the expression of $\left(a-x y^{*}\right)^{\dagger}$ and get some results similar to the famous Shermen-MorrisonWoodbury (SMW) formula (see [2],[3],[4],[5],[6],[7],[10],[12]).

In this paper, we investigate the Moore-Penrose inverse of $a-x y^{*}$ again. We present the explicit expressions of the Moore-Penrose inverse and the group inverse of $a-x y^{*}$ under the conditions $x=a a^{+} x ; y^{*}=y^{*} a^{+} a$, respectively. Our results are new and cover a lots of the known results.

2. Preliminaries

Let $a \in \mathcal{A} \backslash\{0\}$. We know that $a a^{*}$ is a positive element and $1+a a^{*}$ is always invertible in \mathcal{A}. So, for an idempotent element $s \in \mathcal{A},\left(1-s-s^{*}\right)^{2}=1+\left(s-s^{*}\right)(s-$ $\left.s^{*}\right)^{*}$ is always invertible. Thus, we have the following Lemma:

Lemma 2.1.([1],[7],[13]) Let s be an idempotent element in \mathcal{A}, then $1-s-s^{*}$ is invertible in \mathcal{A} and $o(s)=s\left(s+s^{*}-1\right)^{-1}$ is a projection (i.e. $(o(s))^{2}=o(s)=$ $\left.(o(s))^{*}\right)$ and $o(s)=s s^{\dagger}, o(1-s)=1-s^{\dagger} s$.

Lemma 2.2.([1],[7],[13]) Let $a \in \mathcal{A} \backslash\{0\}$ with $a \in G i(\mathcal{A})$. Then

$$
a^{\dagger}=\left[1-o\left(1-a^{+} a\right)\right] a^{+} o\left(a a^{+}\right)=\left(1-p-p^{*}\right)^{-1} a^{+}\left(1-q-q^{*}\right)^{-1} .
$$

Here, $p=a^{+} a, q=a a^{+}$.
The Lemma 2.2 shows if a^{+}exists, then a^{\dagger} exists and

$$
\begin{aligned}
& a a^{\dagger}=o\left(a a^{+}\right)=a a^{+}\left(a a^{+}+\left(a a^{+}\right)^{*}-1\right)^{-1}, \\
& a^{\dagger} a=1-o\left(1-a^{+} a\right)=\left(a^{+} a+\left(a^{+} a\right)^{*}-1\right)^{-1} a^{+} a .
\end{aligned}
$$

Lemma 2.3. Let $a, b \in \mathcal{A}$. Then $1+a b$ is invertible iff $1+b a$ is invertible and

$$
(1+a b)^{-1}=1-a(1+b a)^{-1} b .
$$

Lemma 2.4.([13]) Let $a \in \mathcal{A} \backslash\{0\}$ with a^{+}exists. Then the following conditions are equivalent:
(1) $a^{\#}$ exists.
(2) $a a^{+}+a^{+} a-1$ is invertible in \mathcal{A} for some a^{+}.
(3) $a^{2} a^{+}+1-a a^{+}$is invertible in \mathcal{A} for some a^{+}.
(4) $a^{2} a^{+}+1-a a^{+}$is invertible in \mathcal{A} for any a^{+}.
(5) $a+1-a a^{+}$is invertible in \mathcal{A} for some a^{+}.
(6) $a+1-a a^{+}$is invertible in \mathcal{A} for any a^{+}.

Proof. Noting that $a^{2} a^{+}+1-a a^{+}=1+(a-1) a a^{+}$and $1+a a^{+}(a-1)=a+1-a a^{+}$. Thus, by Lemma 2.3, we have $(3) \Leftrightarrow(5)$ and $(4) \Leftrightarrow(6)$. Please see [13] for the equivalence of (1) to (4).

Lemma 2.5. Let $a \in \mathcal{A}$ with $a^{\#}$ exists. Then

$$
\begin{aligned}
a^{\#} & =\left(1+a-a a^{+}\right)^{-2} a \\
& =a\left(1+a-a^{+} a\right)^{-2} \\
& =\left(1+a-a a^{+}\right)^{-1} a\left(1+a-a^{+} a\right)^{-1} .
\end{aligned}
$$

Proof. Let $w=a^{2} a^{+}+1-a a^{+}$and $b=w^{-2} a$. Noting that $a^{2} a^{+}=a a^{+} w=w a a^{+}$, we have $a b=b a, a b a=a, b a b=b$. That show $b=a^{\#}$.

Noting that

$$
\left(1+a-a a^{+}\right)^{-1} a=a(1+a-a+a)^{-1}
$$

by Lemma 2.3, we have

$$
\begin{aligned}
a^{\#} & =\left(a^{2} a^{+}+1-a a^{+}\right)^{-2} a \\
& =\left[1+(a-1) a a^{+}\right]^{-2} a \\
& =\left[1-(a-1)\left(1+a-a a^{+}\right)^{-1} a a^{+}\right]^{2} a \\
& =\left[1-(a-1)\left(1+a-a a^{+}\right)^{-1} a a^{+}\right]\left(2-a a^{+}\right)\left(1+a-a a^{+}\right)^{-1} a \\
& =\left[1-(a-1)\left(1+a-a a^{+}\right)^{-1} a a^{+}\right] a\left(1+a-a^{+} a\right)^{-1} \\
& =a\left(1+a-a^{+} a\right)^{-2} \\
& =\left(1+a-a a^{+}\right)^{-2} a \\
& =\left(1+a-a a^{+}\right)^{-1} a\left(1+a-a^{+} a\right)^{-1} .
\end{aligned}
$$

3. Main Results

Let $a, x, y \in \mathcal{A}$ with $a \in G i(\mathcal{A})$. We set $e_{a}=1-a a^{+}, f_{a}=1-a^{+} a, z=$ $1-y^{*} a^{+} x, u=e_{a} x, v=y^{*} f_{a}$ throughout this section.

Proposition 3.1. Let $a, x, y \in \mathcal{A}$ with $a \in G i(\mathcal{A})$ and $u=e_{a} x=0, v=y^{*} f_{a}=0$. If z^{+}exists, then $\left(a-x y^{*}\right)^{+}$exists and

$$
\left(a-x y^{*}\right)^{+}=a^{+}+a^{+} x\left(z^{+}-f_{z} e_{z}\right) y^{*} a^{+} .
$$

Proof. Let $\Lambda=a^{+}+a^{+} x\left(z^{+}-f_{z} e_{z}\right) y^{*} a^{+}$. Noting that $a a^{+} x=x, y^{*} a^{+} a=y^{*}$ and
$y^{*} a^{+} x=1-z$, we have

$$
\begin{aligned}
\left(a-x y^{*}\right) \Lambda & =\left(a-x y^{*}\right)\left(a^{+}+a^{+} x\left(z^{+}-f_{z} e_{z}\right) y^{*} a^{+}\right) \\
& =a a^{+}-x e_{z} y^{*} a^{+} \\
\Lambda\left(a-x y^{*}\right) & =\left(a^{+}+a^{+} x\left(z^{+}-f_{z} e_{z}\right) y^{*} a^{+}\right)\left(a-x y^{*}\right) \\
& =a^{+} a-a^{+} x f_{z} y^{*}
\end{aligned}
$$

and $\left(a-x y^{*}\right) \Lambda\left(a-x y^{*}\right)=\left(a-x y^{*}\right), \Lambda\left(a-x y^{*}\right) \Lambda=\Lambda$.
Corollary 3.2. Let $x, y \in \mathcal{A}$. Then $\left(1-x y^{*}\right)^{+}$exists iff $\left(1-y^{*} x\right)^{+}$exists and

$$
\left(1-x y^{*}\right)^{+}=1+x\left\{\left(1-y^{*} x\right)^{+}-\left[1-\left(1-y^{*} x\right)^{+}\left(1-y^{*} x\right)\right]\left[1-\left(1-y^{*} x\right)\left(1-y^{*} x\right)^{+}\right]\right\} y^{*} .
$$

Theorem 3.3. Let $a, x, y \in \mathcal{A}$ with $a \in G i(\mathcal{A})$ and $u=e_{a} x=0, v=y^{*} f_{a}=0$. If z^{\dagger} exists, then $\left(a-x y^{*}\right)^{\dagger}$ exists and

$$
\begin{aligned}
&\left(a-x y^{*}\right)^{\dagger}=\left\{1-\left(a^{\dagger} x f_{z} y^{*}\right)-\left(a^{\dagger} x f_{z} y^{*}\right)^{*}\right\}^{-1}\left\{a^{\dagger}+a^{\dagger} x\left(z^{\dagger}-f_{z} e_{z}\right) y^{*} a^{\dagger}\right\} \\
& \times\left\{1-\left(x e_{z} y^{*} a^{\dagger}\right)-\left(x e_{z} y^{*} a^{\dagger}\right)^{*}\right\}^{-1} .
\end{aligned}
$$

In addition, if $\left(a^{\dagger} x f_{z} y^{*}\right)^{\dagger},\left(x e_{z} y^{*} a^{\dagger}\right)^{\dagger}$ exist, then

$$
\begin{aligned}
\left(a-x y^{*}\right)^{\dagger}=\left\{1-\left(a^{\dagger} x f_{z} y^{*}\right)\left(a^{\dagger} x f_{z} y^{*}\right)^{\dagger}\right\}\left\{a^{\dagger}+a^{\dagger}\right. & \left.x\left(z^{\dagger}-f_{z} e_{z}\right) y^{*} a^{\dagger}\right\} \\
& \times\left\{1-\left(x e_{z} y^{*} a^{\dagger}\right)^{\dagger}\left(x e_{z} y^{*} a^{\dagger}\right)\right\} .
\end{aligned}
$$

Proof. Using Proposition 3.1 and Lemma 2.2 and $\left(2 a^{\dagger} a-1\right)^{2}=\left(2 a a^{\dagger}-1\right)^{2}=1$, we have

$$
\begin{aligned}
&\left(a-x y^{*}\right)^{\dagger}=\left\{1-\left(a^{\dagger} x f_{z} y^{*}\right)-\left(a^{\dagger} x f_{z} y^{*}\right)^{*}\right\}^{-1}\left\{a^{\dagger}+a^{\dagger} x\left(z^{\dagger}-f_{z} e_{z}\right) y^{*} a^{\dagger}\right\} \\
& \times\left\{1-\left(x e_{z} y^{*} a^{\dagger}\right)-\left(x e_{z} y^{*} a^{\dagger}\right)^{*}\right\}^{-1}
\end{aligned}
$$

Noting that

$$
\left(1-a^{\dagger} x f_{z} y^{*}\right)\left[a^{\dagger}+a^{\dagger} x\left(z^{\dagger}-f_{z} e_{z}\right) y^{*} a^{\dagger}\right]\left(1-x e_{z} y^{*} a^{\dagger}\right)=a^{\dagger}+a^{\dagger} x\left(z^{\dagger}-f_{z} e_{z}\right) y^{*} a^{\dagger}
$$

by Lemma 2.1, we get

$$
\begin{aligned}
\left(a-x y^{*}\right)^{\dagger}=\left\{1-\left(a^{\dagger} x f_{z} y^{*}\right)\left(a^{\dagger} x f_{z} y^{*}\right)^{\dagger}\right\}\left\{a^{\dagger}+a^{\dagger}\right. & \left.x\left(z^{\dagger}-f_{z} e_{z}\right) y^{*} a^{\dagger}\right\} \\
& \times\left\{1-\left(x e_{z} y^{*} a^{\dagger}\right)^{\dagger}\left(x e_{z} y^{*} a^{\dagger}\right)\right\} .
\end{aligned}
$$

Corollary 3.4. Let $a, x, y \in \mathcal{A}$ with $u=e_{a} x=0, v=y^{*} f_{a}=0$ and $z=1-y^{*} a^{\dagger} x$. Then
(1) If a is invertible and $z \in G i(\mathcal{A})$, then

$$
\begin{aligned}
\left(a-x y^{*}\right)^{\dagger}=\left\{1-\left(a^{-1} x f_{z} y^{*}\right)-\left(a^{-1}\right.\right. & \left.\left.x f_{z} y^{*}\right)^{*}\right\}^{-1}\left\{a^{-1}+a^{-1} x\left(z^{\dagger}-f_{z} e_{z}\right) y^{*} a^{-1}\right\} \\
& \times\left\{1-\left(x e_{z} y^{*} a^{-1}\right)-\left(x e_{z} y^{*} a^{-1}\right)^{*}\right\}^{-1}
\end{aligned}
$$

(2) If $a=1$ and $z \in G i(\mathcal{A})$, then

$$
\begin{aligned}
\left(1-x y^{*}\right)^{\dagger}=\left\{1-x f_{z} y^{*}-\left(x f_{z} y^{*}\right)^{*}\right\}^{-1}(1 & \left.+x\left(z^{\dagger}-f_{z} e_{z}\right) y^{*}\right) \\
& \times\left\{1-x e_{z} y^{*}-\left(x e_{z} y^{*}\right)^{*}\right\}^{-1}
\end{aligned}
$$

(3) If a and z are invertible, then

$$
\left(a-x y^{*}\right)^{-1}=a^{-1}+a^{-1} x z^{-1} y^{*} a^{-1} .
$$

This is the famous SMW formula.
(4) If a is invertible and $z=0$, then

$$
\begin{aligned}
&\left(a-x y^{*}\right)^{\dagger}=\left\{1-a^{-1} x y^{*}-\left(a^{-1} x y^{*}\right)^{*}\right\}^{-1}\left(a^{-1}-a^{-1} x y^{*} a^{-1}\right) \\
& \times\left\{1-x y^{*} a^{-1}-\left(x y^{*} a^{-1}\right)^{*}\right\}^{-1}
\end{aligned}
$$

This is better then the result of Theorem 3.5 in [3], since there is only true inverse in this formula.
(5) If $u=v=0$ and $z=0$, then

$$
\begin{aligned}
\left(a-x y^{*}\right)^{\dagger} & =\left\{1-a^{\dagger} x y^{*}-\left(a^{\dagger} x y^{*}\right)^{*}\right\}^{-1}\left(a^{\dagger}-a^{\dagger} x y^{*} a^{\dagger}\right) \\
& \times\left\{1-x y^{*} a^{\dagger}-\left(x y^{*} a^{\dagger}\right)^{*}\right\}^{-1} \\
& =\left(1-\left(a^{\dagger} x y^{*}\right)\left(a^{\dagger} x y^{*}\right)^{\dagger}\right) a^{\dagger}\left(1-\left(x y^{*} a^{\dagger}\right)^{\dagger}\left(x y a^{\dagger}\right)\right) \\
& =\left(1-\left(a^{\dagger} x\right)\left(a^{\dagger} x\right)^{\dagger}\right) a^{\dagger}\left(1-\left(y^{*} a^{\dagger}\right)^{\dagger}\left(y^{*} a^{\dagger}\right)\right) .
\end{aligned}
$$

This is the result of Theorem 2.2 in [7].
Especially, when $a=1$, we get the result of Theorem 3.3 in [3], i.e.,

$$
\left(1-x y^{*}\right)^{\dagger}=\left(1-x x^{\dagger}\right)\left(1-y y^{\dagger}\right)
$$

(6) If $u=v=0$ and $e_{z} y^{*}=0, x f_{z}=0$, then

$$
\left(a-x y^{*}\right)^{\dagger}=a^{\dagger}+a^{\dagger} x z^{\dagger} y^{*} a^{\dagger}
$$

This is the result of Theorem 2.2 in [4].
(7) If $u=v=0$ and z is invertible, then

$$
\left(a-x y^{*}\right)^{\dagger}=a^{\dagger}+a^{\dagger} x z^{-1} y^{*} a^{\dagger} .
$$

This result has been proved by Du and Xue in [7, Proposition2.1] and Deng in [4, Corllary2.3], respectively.

Example 3.5. Let $A=\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1\end{array}\right), X=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right), Y=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$. Then

$$
\begin{aligned}
& A^{\dagger}=\left(\begin{array}{cccc}
\frac{1}{2} & -\frac{1}{4} & -\frac{1}{4} & 0 \\
\frac{1}{2} & -\frac{1}{4} & -\frac{1}{4} & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & -1 \\
0 & 0 & 0 & 1
\end{array}\right), \quad Z^{\dagger}=\left(I-Y^{*} A^{\dagger} X\right)^{\dagger}=\left(\begin{array}{ccc}
0 & 0 & \frac{1}{2} \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right), \\
& F_{Z}=\left(\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2}
\end{array}\right), \quad E_{Z}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
& \left(A^{\dagger} X F_{Z} Y^{*}\right)^{\dagger}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{2}{5} \\
0 & 0 & 0 & \frac{4}{5}
\end{array}\right), \quad\left(X E_{Z} Y^{*} A^{\dagger}\right)^{\dagger}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
0 & 0 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

It is easy to verify that $U=E_{A} X=0, V=Y^{*} F_{A}=0$. So by Theorem 3.4,

$$
\left(A-X Y^{*}\right)^{\dagger}=\left(\begin{array}{cccc}
\frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{2} & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Theorem 3.6. Let $a, x, y \in \mathcal{A}$ with $u=e_{a} x=0, v=y^{*} f_{a}=0$ and $z=1-y^{*} a^{+} x$. If $\left(a-x y^{*}\right)^{\#}$ exists, then

$$
\left(a-x y^{*}\right)^{\#}=\left(1+a-a a^{+}-x y^{*}+x e_{z} y^{*} a^{+}\right)^{-1}\left(a-x y^{*}\right)\left(1+a-a^{+} a-x y^{*}+a^{+} x f_{z} y^{*}\right)^{-1} .
$$

Proof. Using Proposition 3.1 and Lemma 2.5, we have

$$
\begin{aligned}
\left(a-x y^{*}\right)^{\#} & =\left[1+\left(a-x y^{*}\right)-\left(a-x y^{*}\right)\left(a-x y^{*}\right)^{+}\right]^{-1}\left(a-x y^{*}\right) \\
& \times\left[1+\left(a-x y^{*}\right)-\left(a-x y^{*}\right)^{+}\left(a-x y^{*}\right)\right]^{-1} \\
& =\left(1+a-a a^{+}-x y^{*}+x e_{z} y^{*} a^{+}\right)^{-1}\left(a-x y^{*}\right) \\
& \times\left(1+a-a^{+} a-x y^{*}+a^{+} x f_{z} y^{*}\right)^{-1}
\end{aligned}
$$

Corollary 3.7. Let $a, x, y \in \mathcal{A}$ with $u=e_{a} x=0, v=y^{*} f_{a}=0$ and $z=1-y^{*} a^{+} x$. Assume that $\left(a-x y^{*}\right)^{\#}$ exists.
(1) If $z=0$, then

$$
\begin{aligned}
&\left(a-x y^{*}\right)^{\#}=\left(1+a-a a^{+}-x y^{*}+x y^{*} a^{+}\right)^{-1}\left(a-x y^{*}\right) \\
& \times\left(1+a-a^{+} a-x y^{*}+a^{+} x y^{*}\right)^{-1} .
\end{aligned}
$$

(2) If a is invertible, then

$$
\left(a-x y^{*}\right)^{\#}=\left(a-x y^{*}+x e_{z} y^{*} a^{-1}\right)^{-1}\left(a-x y^{*}\right)\left(a-x y^{*}+a^{-1} x f_{z} y^{*}\right)^{-1} .
$$

(3) If $a=1$, then

$$
\left(1-x y^{*}\right)^{\#}=\left(1-x y^{*}+x e_{z} y^{*}\right)^{-1}\left(1-x y^{*}\right)\left(1-x y^{*}+x f_{z} y^{*}\right)^{-1}
$$

In addition, if $z=0$, then $1-x y^{*}$ is an idempotent element in \mathcal{A}.
Example 3.8. Let $X=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right), Y=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1\end{array}\right)$. Then

$$
\begin{array}{ll}
Z=I-Y^{*} X=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
-1 & 0 & 0 \\
-2 & 0 & 1
\end{array}\right), & Z^{+}=\left(\begin{array}{ccc}
-\frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 0 \\
-1 & -1 & 1
\end{array}\right), \\
E_{Z}=I-Z Z^{+}=\left(\begin{array}{ccc}
\frac{1}{2} & -\frac{1}{2} & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right), & F_{Z}=I-Z^{+} Z=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{array}
$$

By Corollary 3.8 (3), we have

$$
\left(I-X Y^{*}\right)^{\#}=\left(\begin{array}{cccc}
0 & 0 & -1 & -1 \\
0 & 1 & -1 & -1 \\
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0
\end{array}\right)
$$

References

[1] G. Chen, Y. Xue, The expression of generalized inverse of the perturbed operators under type I perturbation in Hilbert spaces, Linear Algebra Appl., 285(1998), 1-6.
[2] Y. Chen, X. Hu, Q. Xu, The Moore-Penrose inverse of $A-X Y^{*}$, J. Shanghai Normal Univer., 38(2009), 15-19.
[3] C. Deng, On the invertibility of the operator $A-X B$, Numb. Linear Algebra Appl., 16(2009), 817-831.
[4] C. Deng, A generalization of the Sherman-Morrison-Woodbury formula, Appl. Math. Lett., 24(2011), 1561-1564.
[5] C. Deng, On Moore-Penrose inverse of a kind of operators, Proceedings of the Ninth International Conference on Matrix Theory and Its Applications in China, (2010), 88-91.
[6] C. Deng, Y. Wei, Some New Results of the Sherman-Morrison-Woodbury Formula, Proceeding of The Sixth Iternational Conference of Matrices and Operators, 2(2011), 220-223.
[7] F. Du, Y. Xue, The expression of the Moore-Penrose inverse of $A-X Y^{*}$, J. East China Normal Univ. (Nat. Sci.), 5(2010), 33-37.
[8] H. V. Hsnderson, Searl S. R., On deriving the inverse of a sum of matrices, Siam Review, 23(1)(1981), 53-60.
[9] W. W. Hager, Updating the inverse of a matrix, Siam Review, 31(1989), 221-239.
[10] Shani Jose, K. C. Sivakumar, Moore-Penrose Inverse of Perturbed Operators on Hilbert Spaces, Combinatorial Matrix Theory and Generalized Inverses of Matrices, (2013), 119-131.
[11] S. Kurt, A. Riedel, A Shermen-Morrison-Woodbury identity for rank augmenting matrices with application to centering, Siam J. Math. Anal., 12(1)(1991), 80-95.
[12] T. Steerneman, F. P. Kleij, Properties of the matrix $A-X Y^{*}$, Linear Algebra Appl., 410(2005), 70-86.
[13] Y. Xue, Stable Perturbations of Operators and Related Topics, World Scientific, (2012).

[^0]: * Corresponding Author.

 Received July 25, 2013; revised January 8, 2014; accepted January 29, 2014.
 2010 Mathematics Subject Classification: 15A09, 65F20.
 Key words and phrases: Generalized inverse, Moore-Penrose inverse, Group inverse.
 This reseach is supported by the Foundation of Xuzhou Institute of Technology (No. XKY2014207).

