KYUNGPOOK Math. J. 55(2015), 251-258 http://dx.doi.org/10.5666/KMJ.2015.55.2.251 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Note on the Generalized Invertibility of $a - xy^*$

Fapeng Du^*

Department of Mathematics, Southeast University, Nanjing, 211100, Jiangsu Province, P.R. China Department of Mathematics, School of mathematical & Physical Sciences, Xuzhou Institute of Technology, Xuzhou, 221008, Jiangsu Province, P.R. China

e-mail: jsdfp@163.com

YIFENG XUE Department of Mathematics, East China Normal University, Shanghai, 200241, P.R. China e-mail: yfxue@math.ecnu.edu.cn

ABSTRACT. Let \mathcal{A} be a unital C^* -algebra, a, x and y are elements in \mathcal{A} . In this paper, we present the expression of the Moore–Penrose inverse and the group inverse of $a - xy^*$ under the conditions $x = aa^+x, y^* = y^*a^+a$, respectively.

1. Introduction

Let \mathcal{A} be a C^* -algebra with unit 1 and $a \in \mathcal{A}$. The element $b \in \mathcal{A}$ which satisfied aba = a and bab = b is called the generalized inverse of a, denoted by a^+ . The set of the elements which have generalized inverse in \mathcal{A} , denoted by $Gi(\mathcal{A})$.

The Moore–Penrose inverse of a is denoted by a^{\dagger} and is the unique element to the following equations:

 $aa^{\dagger}a = a, \quad a^{\dagger}aa^{\dagger} = a^{\dagger}, \quad (aa^{\dagger})^* = aa^{\dagger}, \quad (a^{\dagger}a)^* = a^{\dagger}a.$

It is well known that $a \in \mathcal{A}$ has an Moore–Penrose inverse iff a is generalized invertible in \mathcal{A} .

251

^{*} Corresponding Author.

Received July 25, 2013; revised January 8, 2014; accepted January 29, 2014. 2010 Mathematics Subject Classification: 15A09, 65F20.

Key words and phrases: Generalized inverse, Moore–Penrose inverse, Group inverse. This research is supported by the Foundation of Xuzhou Institute of Technology (No. XKY2014207).

The group inverse of an element $a \in \mathcal{A}$ is an unique element $b \in \mathcal{A}$ such that

$$aba = a$$
, $bab = b$, $ab = ba$.

The Moore-Penrose inverse of $a - xy^*$ has many applications in statistics, networks, optimizations etc. (see [8],[9],[11]). Many authors have been studying the expression of $(a - xy^*)^{\dagger}$ and get some results similar to the famous Shermen–Morrison–Woodbury (SMW) formula (see [2],[3],[4],[5],[6],[7],[10],[12]).

In this paper, we investigate the Moore–Penrose inverse of $a - xy^*$ again. We present the explicit expressions of the Moore–Penrose inverse and the group inverse of $a - xy^*$ under the conditions $x = aa^+x$; $y^* = y^*a^+a$, respectively. Our results are new and cover a lots of the known results.

2. Preliminaries

Let $a \in \mathcal{A} \setminus \{0\}$. We know that aa^* is a positive element and $1 + aa^*$ is always invertible in \mathcal{A} . So, for an idempotent element $s \in \mathcal{A}$, $(1 - s - s^*)^2 = 1 + (s - s^*)(s - s^*)^*$ is always invertible. Thus, we have the following Lemma:

Lemma 2.1.([1],[7],[13]) Let s be an idempotent element in \mathcal{A} , then $1 - s - s^*$ is invertible in \mathcal{A} and $o(s) = s(s + s^* - 1)^{-1}$ is a projection (i.e. $(o(s))^2 = o(s) = (o(s))^*$) and $o(s) = ss^{\dagger}, o(1 - s) = 1 - s^{\dagger}s$.

Lemma 2.2.([1],[7],[13]) Let $a \in \mathcal{A} \setminus \{0\}$ with $a \in Gi(\mathcal{A})$. Then

$$a^{\dagger} = [1 - o(1 - a^{\dagger}a)]a^{\dagger}o(aa^{\dagger}) = (1 - p - p^{*})^{-1}a^{+}(1 - q - q^{*})^{-1}.$$

Here, $p = a^+a, q = aa^+$.

The Lemma 2.2 shows if a^+ exists, then a^{\dagger} exists and

$$aa^{\dagger} = o(aa^{+}) = aa^{+}(aa^{+} + (aa^{+})^{*} - 1)^{-1},$$

$$a^{\dagger}a = 1 - o(1 - a^{+}a) = (a^{+}a + (a^{+}a)^{*} - 1)^{-1}a^{+}a.$$

Lemma 2.3. Let $a, b \in A$. Then 1 + ab is invertible iff 1 + ba is invertible and

$$(1+ab)^{-1} = 1 - a(1+ba)^{-1}b.$$

Lemma 2.4.([13]) Let $a \in A \setminus \{0\}$ with a^+ exists. Then the following conditions are equivalent:

- (1) $a^{\#}$ exists.
- (2) $aa^+ + a^+a 1$ is invertible in \mathcal{A} for some a^+ .
- (3) $a^2a^+ + 1 aa^+$ is invertible in \mathcal{A} for some a^+ .
- (4) $a^2a^+ + 1 aa^+$ is invertible in \mathcal{A} for any a^+ .

- (5) $a+1-aa^+$ is invertible in \mathcal{A} for some a^+ .
- (6) $a+1-aa^+$ is invertible in \mathcal{A} for any a^+ .

Proof. Noting that $a^2a^+ + 1 - aa^+ = 1 + (a-1)aa^+$ and $1 + aa^+(a-1) = a + 1 - aa^+$. Thus, by Lemma 2.3, we have (3) \Leftrightarrow (5) and (4) \Leftrightarrow (6). Please see [13] for the equivalence of (1) to (4).

Lemma 2.5. Let $a \in A$ with $a^{\#}$ exists. Then

$$a^{\#} = (1 + a - aa^{+})^{-2}a$$

= $a(1 + a - a^{+}a)^{-2}$
= $(1 + a - aa^{+})^{-1}a(1 + a - a^{+}a)^{-1}$.

Proof. Let $w = a^2a^+ + 1 - aa^+$ and $b = w^{-2}a$. Noting that $a^2a^+ = aa^+w = waa^+$, we have ab = ba, aba = a, bab = b. That show $b = a^{\#}$.

Noting that

$$(1 + a - aa^{+})^{-1}a = a(1 + a - a + a)^{-1},$$

by Lemma 2.3, we have

$$\begin{split} a^{\#} &= (a^{2}a^{+} + 1 - aa^{+})^{-2}a \\ &= [1 + (a - 1)aa^{+}]^{-2}a \\ &= [1 - (a - 1)(1 + a - aa^{+})^{-1}aa^{+}]^{2}a \\ &= [1 - (a - 1)(1 + a - aa^{+})^{-1}aa^{+}](2 - aa^{+})(1 + a - aa^{+})^{-1}a \\ &= [1 - (a - 1)(1 + a - aa^{+})^{-1}aa^{+}]a(1 + a - a^{+}a)^{-1} \\ &= a(1 + a - aa^{+})^{-2}a \\ &= (1 + a - aa^{+})^{-1}a(1 + a - a^{+}a)^{-1}. \end{split}$$

3. Main Results

Let $a, x, y \in \mathcal{A}$ with $a \in Gi(\mathcal{A})$. We set $e_a = 1 - aa^+, f_a = 1 - a^+a, z = 1 - y^*a^+x, u = e_a x, v = y^*f_a$ throughout this section.

Proposition 3.1. Let $a, x, y \in A$ with $a \in Gi(A)$ and $u = e_a x = 0, v = y^* f_a = 0$. If z^+ exists, then $(a - xy^*)^+$ exists and

$$(a - xy^*)^+ = a^+ + a^+ x(z^+ - f_z e_z)y^*a^+.$$

Proof. Let $\Lambda = a^+ + a^+ x(z^+ - f_z e_z)y^*a^+$. Noting that $aa^+x = x, y^*a^+a = y^*$ and

 $y^*a^+x = 1 - z$, we have

$$(a - xy^*)\Lambda = (a - xy^*)(a^+ + a^+x(z^+ - f_z e_z)y^*a^+)$$

= $aa^+ - xe_zy^*a^+,$
 $\Lambda(a - xy^*) = (a^+ + a^+x(z^+ - f_z e_z)y^*a^+)(a - xy^*)$
= $a^+a - a^+xf_zy^*$

and $(a - xy^*)\Lambda(a - xy^*) = (a - xy^*), \Lambda(a - xy^*)\Lambda = \Lambda.$ **Corollary 3.2.** Let $x, y \in A$. Then $(1 - xy^*)^+$ exists iff $(1 - y^*x)^+$ exists and

$$(1-xy^*)^+ = 1 + x\{(1-y^*x)^+ - [1-(1-y^*x)^+(1-y^*x)][1-(1-y^*x)(1-y^*x)^+]\}y^*.$$

Theorem 3.3. Let $a, x, y \in A$ with $a \in Gi(A)$ and $u = e_a x = 0, v = y^* f_a = 0$. If z^{\dagger} exists, then $(a - xy^*)^{\dagger}$ exists and

$$(a - xy^*)^{\dagger} = \{1 - (a^{\dagger}xf_zy^*) - (a^{\dagger}xf_zy^*)^*\}^{-1}\{a^{\dagger} + a^{\dagger}x(z^{\dagger} - f_ze_z)y^*a^{\dagger}\} \\ \times \{1 - (xe_zy^*a^{\dagger}) - (xe_zy^*a^{\dagger})^*\}^{-1}.$$

In addition, if $(a^{\dagger}xf_{z}y^{*})^{\dagger}, (xe_{z}y^{*}a^{\dagger})^{\dagger}$ exist, then

$$(a - xy^{*})^{\dagger} = \{1 - (a^{\dagger}xf_{z}y^{*})(a^{\dagger}xf_{z}y^{*})^{\dagger}\}\{a^{\dagger} + a^{\dagger}x(z^{\dagger} - f_{z}e_{z})y^{*}a^{\dagger}\} \times \{1 - (xe_{z}y^{*}a^{\dagger})^{\dagger}(xe_{z}y^{*}a^{\dagger})\}.$$

Proof. Using Proposition 3.1 and Lemma 2.2 and $(2a^{\dagger}a - 1)^2 = (2aa^{\dagger} - 1)^2 = 1$, we have

$$(a - xy^*)^{\dagger} = \{1 - (a^{\dagger}xf_zy^*) - (a^{\dagger}xf_zy^*)^*\}^{-1}\{a^{\dagger} + a^{\dagger}x(z^{\dagger} - f_ze_z)y^*a^{\dagger}\} \\ \times \{1 - (xe_zy^*a^{\dagger}) - (xe_zy^*a^{\dagger})^*\}^{-1}.$$

Noting that

$$(1 - a^{\dagger} x f_z y^*)[a^{\dagger} + a^{\dagger} x (z^{\dagger} - f_z e_z) y^* a^{\dagger}](1 - x e_z y^* a^{\dagger}) = a^{\dagger} + a^{\dagger} x (z^{\dagger} - f_z e_z) y^* a^{\dagger},$$

by Lemma 2.1, we get

$$(a - xy^{*})^{\dagger} = \{1 - (a^{\dagger}xf_{z}y^{*})(a^{\dagger}xf_{z}y^{*})^{\dagger}\}\{a^{\dagger} + a^{\dagger}x(z^{\dagger} - f_{z}e_{z})y^{*}a^{\dagger}\} \times \{1 - (xe_{z}y^{*}a^{\dagger})^{\dagger}(xe_{z}y^{*}a^{\dagger})\}.$$

Corollary 3.4. Let $a, x, y \in A$ with $u = e_a x = 0, v = y^* f_a = 0$ and $z = 1 - y^* a^{\dagger} x$. Then

254

(1) If a is invertible and $z \in Gi(\mathcal{A})$, then

$$\begin{aligned} (a - xy^*)^{\dagger} &= \{1 - (a^{-1}xf_zy^*) - (a^{-1}xf_zy^*)^*\}^{-1}\{a^{-1} + a^{-1}x(z^{\dagger} - f_ze_z)y^*a^{-1}\} \\ &\times \{1 - (xe_zy^*a^{-1}) - (xe_zy^*a^{-1})^*\}^{-1}. \end{aligned}$$

(2) If a = 1 and $z \in Gi(\mathcal{A})$, then

$$(1 - xy^*)^{\dagger} = \{1 - xf_zy^* - (xf_zy^*)^*\}^{-1}(1 + x(z^{\dagger} - f_ze_z)y^*) \times \{1 - xe_zy^* - (xe_zy^*)^*\}^{-1}.$$

(3) If a and z are invertible, then

$$(a - xy^*)^{-1} = a^{-1} + a^{-1}xz^{-1}y^*a^{-1}.$$

This is the famous SMW formula.

(4) If a is invertible and z = 0, then

$$(a - xy^*)^{\dagger} = \{1 - a^{-1}xy^* - (a^{-1}xy^*)^*\}^{-1}(a^{-1} - a^{-1}xy^*a^{-1}) \times \{1 - xy^*a^{-1} - (xy^*a^{-1})^*\}^{-1}.$$

This is better then the result of Theorem 3.5 in [3], since there is only true inverse in this formula.

(5) If u = v = 0 and z = 0, then

$$\begin{aligned} (a - xy^*)^{\dagger} &= \{1 - a^{\dagger}xy^* - (a^{\dagger}xy^*)^*\}^{-1}(a^{\dagger} - a^{\dagger}xy^*a^{\dagger}) \\ &\times \{1 - xy^*a^{\dagger} - (xy^*a^{\dagger})^*\}^{-1} \\ &= (1 - (a^{\dagger}xy^*)(a^{\dagger}xy^*)^{\dagger})a^{\dagger}(1 - (xy^*a^{\dagger})^{\dagger}(xya^{\dagger})) \\ &= (1 - (a^{\dagger}x)(a^{\dagger}x)^{\dagger})a^{\dagger}(1 - (y^*a^{\dagger})^{\dagger}(y^*a^{\dagger})). \end{aligned}$$

This is the result of Theorem 2.2 in [7]. Especially, when a = 1, we get the result of Theorem 3.3 in [3], i.e.,

$$(1 - xy^*)^{\dagger} = (1 - xx^{\dagger})(1 - yy^{\dagger}).$$

(6) If u = v = 0 and $e_z y^* = 0$, $xf_z = 0$, then

$$(a - xy^*)^{\dagger} = a^{\dagger} + a^{\dagger}xz^{\dagger}y^*a^{\dagger}.$$

This is the result of Theorem 2.2 in [4].

(7) If u = v = 0 and z is invertible, then

$$(a - xy^*)^{\dagger} = a^{\dagger} + a^{\dagger}xz^{-1}y^*a^{\dagger}.$$

This result has been proved by Du and Xue in [7, Proposition2.1] and Deng in [4, Corllary2.3], respectively.

Example 3.5. Let
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}, X = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
.

Then

It is easy to verify that $U = E_A X = 0, V = Y^* F_A = 0$. So by Theorem 3.4,

$$(A - XY^*)^{\dagger} = \begin{pmatrix} \frac{1}{2} & 0 & 0 & 0\\ \frac{1}{2} & 0 & 0 & 0\\ 0 & 0 & 0 & -1\\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Theorem 3.6. Let $a, x, y \in A$ with $u = e_a x = 0, v = y^* f_a = 0$ and $z = 1 - y^* a^+ x$. If $(a - xy^*)^{\#}$ exists, then

$$(a-xy^*)^{\#} = (1+a-aa^+ - xy^* + xe_zy^*a^+)^{-1}(a-xy^*)(1+a-a^+a-xy^* + a^+xf_zy^*)^{-1}.$$

Proof. Using Proposition 3.1 and Lemma 2.5, we have

$$(a - xy^*)^{\#} = [1 + (a - xy^*) - (a - xy^*)(a - xy^*)^+]^{-1}(a - xy^*)$$

$$\times [1 + (a - xy^*) - (a - xy^*)^+(a - xy^*)]^{-1}$$

$$= (1 + a - aa^+ - xy^* + xe_zy^*a^+)^{-1}(a - xy^*)$$

$$\times (1 + a - a^+a - xy^* + a^+xf_zy^*)^{-1}.$$

Corollary 3.7. Let $a, x, y \in A$ with $u = e_a x = 0, v = y^* f_a = 0$ and $z = 1 - y^* a^+ x$. Assume that $(a - xy^*)^{\#}$ exists.

(1) If z = 0, then

$$(a - xy^*)^{\#} = (1 + a - aa^+ - xy^* + xy^*a^+)^{-1}(a - xy^*) \\ \times (1 + a - a^+a - xy^* + a^+xy^*)^{-1}.$$

(2) If a is invertible, then

$$(a - xy^*)^{\#} = (a - xy^* + xe_zy^*a^{-1})^{-1}(a - xy^*)(a - xy^* + a^{-1}xf_zy^*)^{-1}.$$

(3) If a = 1, then

$$(1 - xy^*)^{\#} = (1 - xy^* + xe_zy^*)^{-1}(1 - xy^*)(1 - xy^* + xf_zy^*)^{-1}.$$

In addition, if z = 0, then $1 - xy^*$ is an idempotent element in A.

Example 3.8. Let
$$X = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
. Then

$$Z = I - Y^* X = \begin{pmatrix} -1 & 0 & 0 \\ -1 & 0 & 0 \\ -2 & 0 & 1 \end{pmatrix}, \qquad Z^+ = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 0 \\ -1 & -1 & 1 \end{pmatrix},$$

$$E_Z = I - ZZ^+ = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad F_Z = I - Z^+ Z = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

By Corollary 3.8(3), we have

$$(I - XY^*)^{\#} = \begin{pmatrix} 0 & 0 & -1 & -1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \end{pmatrix}.$$

References

- [1] G. Chen, Y. Xue, The expression of generalized inverse of the perturbed operators under type I perturbation in Hilbert spaces, Linear Algebra Appl., **285**(1998), 1–6.
- [2] Y. Chen, X. Hu, Q. Xu, The Moore–Penrose inverse of A-XY*, J. Shanghai Normal Univer., 38(2009), 15–19.
- [3] C. Deng, On the invertibility of the operator A XB, Numb. Linear Algebra Appl., 16(2009), 817–831.
- [4] C. Deng, A generalization of the Sherman-Morrison-Woodbury formula, Appl. Math. Lett., 24(2011), 1561–1564.
- [5] C. Deng, On Moore-Penrose inverse of a kind of operators, Proceedings of the Ninth International Conference on Matrix Theory and Its Applications in China, (2010), 88–91.

- C. Deng, Y. Wei, Some New Results of the Sherman-Morrison-Woodbury Formula, Proceeding of The Sixth Iternational Conference of Matrices and Operators, 2(2011), 220–223.
- [7] F. Du, Y. Xue, The expression of the Moore–Penrose inverse of A XY*, J. East China Normal Univ. (Nat. Sci.), 5(2010), 33–37.
- [8] H. V. Hsnderson, Searl S. R., On deriving the inverse of a sum of matrices, Siam Review, 23(1)(1981), 53-60.
- [9] W. W. Hager, Updating the inverse of a matrix, Siam Review, 31(1989), 221–239.
- [10] Shani Jose, K. C. Sivakumar, Moore-Penrose Inverse of Perturbed Operators on Hilbert Spaces, Combinatorial Matrix Theory and Generalized Inverses of Matrices, (2013), 119–131.
- [11] S. Kurt, A. Riedel, A Shermen-Morrison-Woodbury identity for rank augmenting matrices with application to centering, Siam J. Math. Anal., 12(1)(1991), 80–95.
- [12] T. Steerneman, F. P. Kleij, Properties of the matrix $A XY^*$, Linear Algebra Appl., **410**(2005), 70–86.
- [13] Y. Xue, Stable Perturbations of Operators and Related Topics, World Scientific, (2012).