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Abstract. Let A be a unital C∗–algebra, a, x and y are elements in A. In this paper, we

present the expression of the Moore–Penrose inverse and the group inverse of a−xy∗under

the conditions x = aa+x, y∗ = y∗a+a, respectively.

1. Introduction

Let A be a C∗–algebra with unit 1 and a ∈ A. The element b ∈ A which
satisfied aba = a and bab = b is called the generalized inverse of a, denoted by a+.
The set of the elements which have generalized inverse in A, denoted by Gi(A).

The Moore–Penrose inverse of a is denoted by a† and is the unique element to
the following equations:

aa†a = a, a†aa† = a†, (aa†)∗ = aa†, (a†a)∗ = a†a.

It is well known that a ∈ A has an Moore–Penrose inverse iff a is generalized
invertible in A.
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The group inverse of an element a ∈ A is an unique element b ∈ A such that

aba = a, bab = b, ab = ba.

The Moore-Penrose inverse of a− xy∗ has many applications in statistics, net-
works, optimizations etc. (see [8],[9],[11]). Many authors have been studying the ex-
pression of (a−xy∗)† and get some results similar to the famous Shermen–Morrison–
Woodbury (SMW) formula (see [2],[3],[4],[5],[6],[7],[10],[12]).

In this paper, we investigate the Moore–Penrose inverse of a − xy∗ again. We
present the explicit expressions of the Moore–Penrose inverse and the group inverse
of a − xy∗ under the conditions x = aa+x; y∗ = y∗a+a, respectively. Our results
are new and cover a lots of the known results.

2. Preliminaries

Let a ∈ A\{0}. We know that aa∗ is a positive element and 1 + aa∗ is always
invertible in A. So, for an idempotent element s ∈ A, (1−s−s∗)2 = 1+(s−s∗)(s−
s∗)∗ is always invertible. Thus, we have the following Lemma:

Lemma 2.1.([1],[7],[13]) Let s be an idempotent element in A, then 1 − s − s∗ is
invertible in A and o(s) = s(s + s∗ − 1)−1 is a projection (i.e. (o(s))2 = o(s) =
(o(s))∗) and o(s) = ss†, o(1− s) = 1− s†s.

Lemma 2.2.([1],[7],[13]) Let a ∈ A\{0} with a ∈ Gi(A). Then

a† = [1− o(1− a+a)]a+o(aa+) = (1− p− p∗)−1a+(1− q − q∗)−1.

Here, p = a+a, q = aa+.
The Lemma 2.2 shows if a+ exists, then a† exists and

aa† = o(aa+) = aa+(aa+ + (aa+)∗ − 1)−1,

a†a = 1− o(1− a+a) = (a+a+ (a+a)∗ − 1)−1a+a.

Lemma 2.3. Let a, b ∈ A. Then 1 + ab is invertible iff 1 + ba is invertible and

(1 + ab)−1 = 1− a(1 + ba)−1b.

Lemma 2.4.([13]) Let a ∈ A\{0} with a+ exists. Then the following conditions are
equivalent:

(1) a# exists.

(2) aa+ + a+a− 1 is invertible in A for some a+.

(3) a2a+ + 1− aa+ is invertible in A for some a+.

(4) a2a+ + 1− aa+ is invertible in A for any a+.
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(5) a+ 1− aa+ is invertible in A for some a+.

(6) a+ 1− aa+ is invertible in A for any a+.

Proof. Noting that a2a++1−aa+ = 1+(a−1)aa+ and 1+aa+(a−1) = a+1−aa+.
Thus, by Lemma 2.3, we have (3) ⇔ (5) and (4) ⇔ (6). Please see [13] for the
equivalence of (1) to (4). 2

Lemma 2.5. Let a ∈ A with a# exists. Then

a# = (1 + a− aa+)−2a

= a(1 + a− a+a)−2

= (1 + a− aa+)−1a(1 + a− a+a)−1.

Proof. Let w = a2a++1−aa+ and b = w−2a. Noting that a2a+ = aa+w = waa+,

we have ab = ba, aba = a, bab = b. That show b = a#.
Noting that

(1 + a− aa+)−1a = a(1 + a− a+ a)−1,

by Lemma 2.3, we have

a# = (a2a+ + 1− aa+)−2a

= [1 + (a− 1)aa+]−2a

= [1− (a− 1)(1 + a− aa+)−1aa+]2a

= [1− (a− 1)(1 + a− aa+)−1aa+](2− aa+)(1 + a− aa+)−1a

= [1− (a− 1)(1 + a− aa+)−1aa+]a(1 + a− a+a)−1

= a(1 + a− a+a)−2

= (1 + a− aa+)−2a

= (1 + a− aa+)−1a(1 + a− a+a)−1. 2

3. Main Results

Let a, x, y ∈ A with a ∈ Gi(A). We set ea = 1 − aa+, fa = 1 − a+a, z =
1− y∗a+x, u = eax, v = y∗fa throughout this section.

Proposition 3.1. Let a, x, y ∈ A with a ∈ Gi(A) and u = eax = 0, v = y∗fa = 0.
If z+ exists, then (a− xy∗)+ exists and

(a− xy∗)+ = a+ + a+x(z+ − fzez)y
∗a+.

Proof. Let Λ = a+ + a+x(z+ − fzez)y
∗a+. Noting that aa+x = x, y∗a+a = y∗ and
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y∗a+x = 1− z, we have

(a− xy∗)Λ = (a− xy∗)(a+ + a+x(z+ − fzez)y
∗a+)

= aa+ − xezy
∗a+,

Λ(a− xy∗) = (a+ + a+x(z+ − fzez)y
∗a+)(a− xy∗)

= a+a− a+xfzy
∗

and (a− xy∗)Λ(a− xy∗) = (a− xy∗),Λ(a− xy∗)Λ = Λ. 2

Corollary 3.2. Let x, y ∈ A. Then (1− xy∗)+ exists iff (1− y∗x)+ exists and

(1−xy∗)+ = 1+x{(1−y∗x)+− [1−(1−y∗x)+(1−y∗x)][1−(1−y∗x)(1−y∗x)+]}y∗.

Theorem 3.3. Let a, x, y ∈ A with a ∈ Gi(A) and u = eax = 0, v = y∗fa = 0. If
z† exists, then (a− xy∗)† exists and

(a− xy∗)† = {1− (a†xfzy
∗)− (a†xfzy

∗)∗}−1{a† + a†x(z† − fzez)y
∗a†}

× {1− (xezy
∗a†)− (xezy

∗a†)∗}−1.

In addition, if (a†xfzy
∗)†, (xezy

∗a†)† exist, then

(a− xy∗)† = {1− (a†xfzy
∗)(a†xfzy

∗)†}{a† + a†x(z† − fzez)y
∗a†}

× {1− (xezy
∗a†)†(xezy

∗a†)}.

Proof. Using Proposition 3.1 and Lemma 2.2 and (2a†a − 1)2 = (2aa† − 1)2 = 1,

we have

(a− xy∗)† = {1− (a†xfzy
∗)− (a†xfzy

∗)∗}−1{a† + a†x(z† − fzez)y
∗a†}

× {1− (xezy
∗a†)− (xezy

∗a†)∗}−1.

Noting that

(1− a†xfzy
∗)[a† + a†x(z† − fzez)y

∗a†](1− xezy
∗a†) = a† + a†x(z† − fzez)y

∗a†,

by Lemma 2.1, we get

(a− xy∗)† = {1− (a†xfzy
∗)(a†xfzy

∗)†}{a† + a†x(z† − fzez)y
∗a†}

× {1− (xezy
∗a†)†(xezy

∗a†)}.

2

Corollary 3.4. Let a, x, y ∈ A with u = eax = 0, v = y∗fa = 0 and z = 1− y∗a†x.
Then
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(1) If a is invertible and z ∈ Gi(A), then

(a−xy∗)† = {1−(a−1xfzy
∗)−(a−1xfzy

∗)∗}−1{a−1+a−1x(z†−fzez)y
∗a−1}

× {1− (xezy
∗a−1)− (xezy

∗a−1)∗}−1.

(2) If a = 1 and z ∈ Gi(A), then

(1− xy∗)† = {1− xfzy
∗ − (xfzy

∗)∗}−1(1 + x(z† − fzez)y
∗)

× {1− xezy
∗ − (xezy

∗)∗}−1.

(3) If a and z are invertible, then

(a− xy∗)−1 = a−1 + a−1xz−1y∗a−1.

This is the famous SMW formula.

(4) If a is invertible and z = 0, then

(a− xy∗)† = {1− a−1xy∗ − (a−1xy∗)∗}−1(a−1 − a−1xy∗a−1)

× {1− xy∗a−1 − (xy∗a−1)∗}−1.

This is better then the result of Theorem 3.5 in [3], since there is only true
inverse in this formula.

(5) If u = v = 0 and z = 0, then

(a− xy∗)† = {1− a†xy∗ − (a†xy∗)∗}−1(a† − a†xy∗a†)

× {1− xy∗a† − (xy∗a†)∗}−1

= (1− (a†xy∗)(a†xy∗)†)a†(1− (xy∗a†)†(xya†))

= (1− (a†x)(a†x)†)a†(1− (y∗a†)†(y∗a†)).

This is the result of Theorem 2.2 in [7].

Especially, when a = 1, we get the result of Theorem 3.3 in [3], i.e.,

(1− xy∗)† = (1− xx†)(1− yy†).

(6) If u = v = 0 and ezy
∗ = 0, xfz = 0, then

(a− xy∗)† = a† + a†xz†y∗a†.

This is the result of Theorem 2.2 in [4].

(7) If u = v = 0 and z is invertible, then

(a− xy∗)† = a† + a†xz−1y∗a†.

This result has been proved by Du and Xue in [7, P roposition2.1] and Deng
in [4, Corllary2.3], respectively.
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Example 3.5. Let A =


1 1 1 1
0 0 1 1
0 0 1 1
0 0 0 1

 , X =


1 1 0
1 0 0
1 0 0
1 0 0

 , Y =


0 0 0
0 0 0
1 0 0
1 0 1

 .

Then

A† =


1
2 −1

4 − 1
4 0

1
2 −1

4 − 1
4 0

0 1
2

1
2 −1

0 0 0 1

 , Z† = (I − Y ∗A†X)† =

0 0 1
2

0 1 0
0 0 1

2

 ,

FZ =

 1
2 0 1

2
0 0 0
1
2 0 1

2

 , EZ =

1 0 0
0 0 0
0 0 0

 ,

(A†XFZY
∗)† =


0 0 0 0
0 0 0 0
0 0 0 2

5
0 0 0 4

5

 , (XEZY
∗A†)† =


0 0 0 0
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

0 0 0 0

 .

It is easy to verify that U = EAX = 0, V = Y ∗FA = 0. So by Theorem 3.4,

(A−XY ∗)† =


1
2 0 0 0
1
2 0 0 0
0 0 0 −1
0 0 0 0

 .

Theorem 3.6. Let a, x, y ∈ A with u = eax = 0, v = y∗fa = 0 and z = 1− y∗a+x.
If (a− xy∗)# exists, then

(a−xy∗)# = (1+a−aa+−xy∗+xezy
∗a+)−1(a−xy∗)(1+a−a+a−xy∗+a+xfzy

∗)−1.

Proof. Using Proposition 3.1 and Lemma 2.5, we have

(a− xy∗)# = [1 + (a− xy∗)− (a− xy∗)(a− xy∗)+]−1(a− xy∗)

× [1 + (a− xy∗)− (a− xy∗)+(a− xy∗)]−1

= (1 + a− aa+ − xy∗ + xezy
∗a+)−1(a− xy∗)

× (1 + a− a+a− xy∗ + a+xfzy
∗)−1. 2

Corollary 3.7. Let a, x, y ∈ A with u = eax = 0, v = y∗fa = 0 and z = 1− y∗a+x.
Assume that (a− xy∗)# exists.

(1) If z = 0, then

(a− xy∗)# = (1 + a− aa+ − xy∗ + xy∗a+)−1(a− xy∗)

× (1 + a− a+a− xy∗ + a+xy∗)−1.
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(2) If a is invertible, then

(a− xy∗)# = (a− xy∗ + xezy
∗a−1)−1(a− xy∗)(a− xy∗ + a−1xfzy

∗)−1.

(3) If a = 1, then

(1− xy∗)# = (1− xy∗ + xezy
∗)−1(1− xy∗)(1− xy∗ + xfzy

∗)−1.

In addition, if z = 0, then 1− xy∗ is an idempotent element in A.

Example 3.8. Let X =


1 1 0
1 0 0
1 0 0
1 0 0

 , Y =


0 1 0
0 0 1
1 0 0
1 0 1

 . Then

Z = I − Y ∗X =

−1 0 0
−1 0 0
−2 0 1

 , Z+ =

−1
2 − 1

2 0
0 0 0
−1 −1 1

 ,

EZ = I − ZZ+ =

 1
2 −1

2 0
−1

2
1
2 0

0 0 0

 , FZ = I − Z+Z =

0 0 0
0 1 0
0 0 0

 .

By Corollary 3.8 (3), we have

(I −XY ∗)# =


0 0 −1 −1
0 1 −1 −1
0 0 0 −1
0 0 −1 0

 .
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