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CHARACTERIZATIONS AND THE MOORE-PENROSE

INVERSE OF HYPERGENERALIZED K-PROJECTORS

Marina Tošić

Abstract. We characterize hypergeneralized k-projectors (i.e., Ak =
A†). Also, some representation for the Moore-Penrose inverse of a lin-
ear combination of hypergeneralized k-projectors is found and the in-
vertibility for some linear combinations of commuting hypergeneralized
k-projectors is considered.

1. Introduction

Let Cn×m denote the set of all n×m complex matrices. The symbols R(A)
and r(A) will denote the range (column space) and the rank of a matrix A,
respectively. For a matrix A ∈ Cn×n, tr(A) and σ(A) will denote the trace
and the spectrum of a matrix A, respectively. Also, we will use the following
notation: for k ∈ N and k > 1, the set of complex roots of 1 shall be denoted by
σk and if we set ωk = e2πi/k, then σk = {ω0

k, ω
1
k, . . . , ω

k−1
k }. The Moore-Penrose

inverse of A is the unique matrix A† satisfying the equations

(1) AA†A = A, (2) A†AA† = A†, (3) AA† = (AA†)∗, (4) A†A = (A†A)∗.

In will denote the identity matrix of order n and 0r will denote the null-
matrix of order r. Also, PS denotes the orthogonal projector onto subspace S.
We use the notations CP

n , COP
n , CEP

n , CGP
n and CHGP

n for the subsets of Cn×n

consisting of projectors (idempotent matrices), orthogonal projectors (Hermit-
ian idempotent matrices), EP (range-Hermitian) matrices, generalized and hy-
pergeneralized projectors, respectively, i.e.,

CP
n = {A ∈ C

n×n : A2 = A},

COP
n = {A ∈ C

n×n : A2 = A = A∗},

CEP
n = {A ∈ C

n×n : R(A) = R(A∗)} = {A ∈ C
n×n : AA† = A†A},

CGP
n = {A ∈ C

n×n : A2 = A∗},

CHGP
n = {A ∈ C

n×n : A2 = A†}.
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Further, we will use the abbreviations “g-p” and “hg-p” for generalized
projector and hypergeneralized projector, respectively.

A matrix B ∈ Cn×n is said to be similar to a matrix A ∈ Cn×n if there exists
a nonsingular matrix P ∈ C

n×n such that B = P−1AP . If a matrix A ∈ C
n×n

is similar to a diagonal matrix, then A is said to be diagonalizable.
The concepts of g-p and hg-p were introduced by Groß and Trenkler [11] who

presented very interesting properties of the classes of g-p and hg-p. A char-
acterization of nonnegative matrices such that A = A† is derived by Berman
[7].

In [5], the authors introduced the following concept: A square matrix A is
said to be a k-generalized projector (g-kp) if Ak = A∗. This class of matrices
obviously generalizes to the class of g-p. In [9], the g-kp have been generalized
on the set of all bounded linear operators on Hilbert space. They defined the
hypergeneralized k-projectors (hg-kp): Let H be a Hilbert space and B(H) the
all bounded linear operators on H. For A ∈ B(H), A is said to be a hypergen-
eralized k-projector if there exists a natural number k > 1 such that Ak = A†.
Also, they proved the following inclusion: The set of all g-kp is the subset of
all hg-kp. Hence, the class of g-kp may be generalized by considering the class
of hg-kp. This leads our interest to the subset of the class of square matrices
A with the property Ak = A† for k ∈ N and k > 1, called as hypergeneralized
k-projectors. Specially, if k = 2, we get the class of h-p (see [1], [2], [3], [11],
[13], [14]).

In this paper, we characterize this class of matrices and, as simple corollaries,
we deduce the characterizations of hg-p presented in [2] and [3]. Also, we give
the form for the Moore-Penrose inverse and study the nonsingularity of a linear
combination c1A + c2B, where A and B are commuting hg-kp, as well as the
nonsingularity of a linear combination c1A+ c2B+ c3C, where A,B and C are
commuting hg-kp such that BC = 0. Also, as corollaries for commuting g-p
and hg-p, we give results presented in [14].

2. Characterizations of hypergeneralized k-projectors

In this section, we give some characterizations of hg-kp. First, we give
necessary and sufficient conditions that A is a hg-kp.

Theorem 2.1. Let A ∈ Cn×n and k ∈ N, k > 1. Then the following statements

are equivalent:

(i) A is a hg-kp (i.e., Ak = A†);
(ii) A is a EP matrix, σ(A) ⊆ σk+1 ∪ {0} and A is diagonalizable;
(iii) A is a EP matrix and Ak+2 = A.

Proof. Let us prove that (i) is equivalent to (iii).
(i)⇒(iii) Matrix A is EP because AA† = AAk = AkA = A†A. Also, matrix

A is (k + 2)-potent because Ak+2 = AAkA = AA†A = A.
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(iii)⇒(i) Since A is an EP matrix, there exist a unitary matrix U ∈ Cn×n

and a nonsingular matrix K ∈ Cr×r such that

(1) A = U(K ⊕ 0)U∗

(see [8]). Also,

(2) A† = U(K−1 ⊕ 0)U∗.

From Ak+2 = A, we have Kk = K−1, which implies that A is a hg-kp. Hence,
(i) holds.

(ii)⇔(iii) This follows from the well known fact that Ak+2 = A if and only
if A is diagonalizable and the spectrum of A is contained in σk+1 ∪ {0} (see [6,
Theorem 2.1]). �

From Theorem 2.1, it follows that A is a hg-kp if and only if

(3) A = U(K ⊕ 0)U∗,

where U ∈ Cn×n is a unitary matrix and K ∈ Cr×r is a nonsingular matrix
such that Kk+1 = Ir.

If A is a hg-kp, then Ak+1 = AA†, i.e., Ak+1 is the orthogonal projector
onto R(A). Also, the converse implication is valid.

Theorem 2.2. Let A ∈ Cn×n. Then A is a hg-kp if and only if Ak+1 is the

orthogonal projector onto R(A).

Proof. (⇐) By Corollary 6 in [12], every matrix A ∈ Cn×n of rank r has the
form

(4) A = U

[

DK DL

0 0

]

U∗,

where U ∈ Cn×n is unitary, D = diag(λ1Ir1 , . . . , λtIrt) is the diagonal matrix
of nonzero singular values of A, λ1 > λ2 > · · · > λt > 0, r1 + r2 + · · ·+ rt = r

and K ∈ Cr×r, L ∈ Cr×(n−r) satisfy

KK∗ + LL∗ = Ir .

From (4), it follows that

(5) Ak+1 = U

[

(DK)k+1 (DK)kDL

0 0

]

U∗

and

A† = U

[

K∗D−1 0
L∗D−1 0

]

U∗.

Hence,
AA† = PR(A) = U(Ir ⊕ 0)U∗.

Now, PR(A) = Ak+1 if and only if (DK)k+1 = Ir and L = 0. Thus, A has the
form (3), which is equivalent to the fact that A is a hg-kp. �

Corollary 2.3. Let A ∈ Cn×n be a hg-kp. Then r(A) = tr(Ak+1).
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Proof. From Theorem 2.2 and (3) we get r(A) = r(Ak+1) = tr(Ak+1). �

The converse result is invalid, as can be seen by taking

A =

[

1 1
0 1

]

,

in which case r(A) = tr(Ak) and A† = A−1 6= Ak for k ∈ N. Hence, A is not a
hg-kp.

As corollaries, we get Theorem 1 and Corollary 1 in [3].

Corollary 2.4 ([3]). Let A ∈ Cn×n. Then A ∈ CHGP
n if and only if A3 is the

orthogonal projector onto R(A).

Corollary 2.5 ([3]). Let A ∈ CHGP
n . Then r(A) = tr(A3).

By definition of the Moore-Penrose inverse, the group inverse and the Drazin
inverse, it is easy to see that if A is a hg-kp, then

A† = A♯ = Ad = Ak = Am(k+1)+k, m ∈ N.

Generally A is a hg-kp if and only if its Moore-Penrose inverse A† is:

Theorem 2.6. Let A ∈ Cn×n. The following are equivalent:

(i) A is a hg-kp;
(ii) A∗ is a hg-kp;
(iii) A† is a hg-kp.

Proof. Let A and A† be given by (1) and (2), respectively.
(i)⇒(ii) This follows from Kk = K−1 ⇔ (K∗)k = (K∗)−1.
(ii)⇒(i) Since (A∗)∗ = A, the proof follows directly by (i)⇒(ii) replacing A

by A∗.

(i)⇒(iii) This follows from Kk = K−1 ⇔ K = (K−1)k.
(iii)⇒(i) Since (A†)† = A, the proof follows directly by (i)⇒(iii) replacing

A by A†. �

As a corollary we get the part of Theorem 5 in [2].

Corollary 2.7 ([2]). Let A ∈ Cn×n. Then

A ∈ CHGP
n ⇔ A† ∈ CHGP

n .

The following theorem singles out a sufficient condition for the equivalence
of A being a hg-kp and A being an EP matrix.

Theorem 2.8. Let A ∈ Cn×n. Assume there exists B ∈ Cn×n such that B is

a hg-kp and A2 = AB or A2 = BA. Then A is a hg-kp if and only if A ∈ CEP
n .

Proof. (⇒) This follows from Theorem 2.1.
(⇐) Since B is a hg-kp, it is clear that A2 = AB leads to

A2 = ABB†B = ABk+2 = Ak+3.
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Now, by using that AA† = A†A and A†AA† = A† and multiplying A2 = Ak+3

three times by A†, we have that A† = Ak. The proof with the condition
A2 = BA follows similarly. �

As the following corollary, we get Theorem 8 in [3].

Corollary 2.9 ([3]). Let A,B ∈ Cn×n be such that B ∈ CHGP
n and A2 = AB

or A2 = BA. Then A ∈ CHGP
n if and only if A ∈ CEP

n .

3. The Moore-Penrose inverse and the invertibility of a linear

combination of commuting hypergeneralized k-projectors

It is well known that any g-kp is a hg-kp. So, following results also hold for
g-kp.

The following lemma is furthermore very useful in this section.

Lemma 3.1. Let X,Y ∈ Cn×n and c1, c2 ∈ C. If Xk+1 = Y k+1 = In and

XY = Y X, then

(c1X + c2Y )
k

∑

i=0

(−1)ick−i
1 ci2X

k−iY i = (ck+1
1 + (−1)kck+1

2 )In.(6)

Proof. The result follows from

(c1X + c2Y )

k
∑

i=0

(−1)ick−i
1 ci2X

k−iY i = ck+1
1 Xk+1 + (−1)kck+1

2 Y k+1

= (ck+1
1 + (−1)kck+1

2 )In. �

In the following theorem, we present the form for the Moore-Penrose inverse
and we give some necessary and sufficient conditions for the invertibility of the
linear combination c1A+ c2B, where A and B are two commuting hg-kp.

Theorem 3.1. Let A ∈ C
n×n and B ∈ C

n×n be commuting hg-kp and let

c1, c2 ∈ C \ {0} such that ck+1
1 + (−1)kck+1

2 6= 0. Then

(c1A+ c2B)† =
1

ck+1
1 + (−1)kck+1

2

(

k
∑

i=0

(−1)ick−i
1 ci2A

k−iBi
)

Ak+1Bk+1

+
1

c1
Ak(In −Bk+1) +

1

c2
Bk(In −Ak+1).(7)

Furthermore, c1A+ c2B is nonsingular if and only if n = r(A) + r(B)− r(AB)
and in this case (c1A+ c2B)−1 is given by (7).

Proof. By Theorem 2.1 and Corollary 3.9 from [4], we can suppose that A and
B have the form

A = U(A1 ⊕A2 ⊕ 0t ⊕ 0)U∗, B = U(B1 ⊕ 0s ⊕B2 ⊕ 0)U∗,
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where U ∈ Cn×n is unitary, A1, B1 ∈ Cr×r, A2 ∈ Cs×s, B2 ∈ Ct×t are non-
singular, A1B1 = B1A1, A

k+1
1 = Bk+1

1 = Ir , A
k+1
2 = Is and Bk+1

2 = It. Also,
notice that

(8) Ak+1 = U(Ir ⊕ Is ⊕ 0t ⊕ 0)U∗, Bk+1 = U(Ir ⊕ 0s ⊕ It ⊕ 0)U∗.

Now, we have

(9) c1A+ c2B = U
(

(c1A1 + c2B1)⊕ c1A2 ⊕ c2B2 ⊕ 0n−(r+s+t)

)

U∗.

By Lemma 3.1, we get that c1A1 + c2B1 is nonsingular and that

(c1A1 + c2B1)
−1 =

1

ck+1
1 + (−1)kck+1

2

k
∑

i=0

(−1)ick−i
1 ci2A

k−i
1 Bi

1.

Also, c1A2 and c2B2 are nonsingular and (c1A2)
−1 = 1

c1
Ak

2 and (c2B2)
−1 =

1
c2
Bk

2 . Now, we have

(c1A+ c2B)†

= U
(

(
1

ck+1
1 + (−1)kck+1

2

k
∑

i=0

(−1)ick−i
1 ci2A

k−i
1 Bi

1)⊕
1

c1
Ak

2 ⊕
1

c2
Bk

2 ⊕ 0
)

U∗.

Finally, using (8), we get (7).
Also, from (9) we can conclude that c1A+ c2B is nonsingular if and only if

n = r + t + s. Since r(A) = r + t, r(B) = r + s and r(AB) = r, we get that
c1A+ c2B is nonsingular if and only if n = r(A) + r(B)− r(AB). �

In the following corollaries, we study the problem of when linear combina-
tions c1In + c2

∏m
i=1 A

ki

i and c1In + c2A are nonsingular, where {Ai}
m
i=1 is a

finite commuting family of hg-kp and A is a hg-kp, respectively. First, we state
the following lemma:

Lemma 3.2. Let A ∈ Cn×n and B ∈ Cn×n be commuting hg-kp. Then AB is

a hg-kp.

Proof. Since A and B are two commuting hg-kp, then BB†A∗AB = A∗AB

and ABB∗A†A = ABB∗, so (AB)† = A†B† (see [10]). Now,

(AB)† = A†B† = AkBk = (AB)k.

Hence, AB is a hg-kp. �

Corollary 3.2. Let all of Ai ∈ Cn×n, i = 1,m be commuting hg-kp, m, k1, . . .,

km ∈ N, c1, c2 ∈ C, c1 6= 0 and ck+1
1 +(−1)kck+1

2 6= 0. Then c1In+ c2
∏m

i=1 A
ki

i

is nonsingular.

Proof. From Lemma 3.2 we get: if {Ai}
m
i=1 is a finite commuting family of

hg-kp, then
∏m

i=1 A
ki

i is also a hg-kp, where m, k1, . . . , km ∈ N. Now, the proof
follows from Theorem 3.1. �
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Corollary 3.3. Let A ∈ Cn×n be a hg-kp, c1, c2 ∈ C, c1 6= 0 and ck+1
1 +

(−1)kck+1
2 6= 0. Then c1In + c2A is nonsingular and

(c1In+c2A)
−1 =

1

ck+1
1 + (−1)kck+1

2

(

k
∑

i=0

(−1)ick−i
1 ci2A

i
)

Ak+1+
1

c1
(In−Ak+1).

As corollaries we get Theorem 2.1, Proposition 2.3 and Theorem 2.2 in [14],
respectively.

Corollary 3.4 ([14]). Let A ∈ Cn×n and B ∈ Cn×n be commuting g-p or hg-p

and let c1, c2 ∈ C \ {0} such that c31 + c32 6= 0. Then

(c1A+ c2B)† =
1

c31 + c32

(

c21A
2B3 − c1c2AB + c22A

3B2
)

+
1

c1
A2(In −B3) +

1

c2
B2(In −A3).(10)

Furthermore, c1A+ c2B is nonsingular if and only if n = r(A) + r(B)− r(AB)
and in this case (c1A+ c2B)−1 is given by (10).

Corollary 3.5 ([14]). Let all of Ai ∈ Cn×n, i = 1,m be commuting g-p or hg-p,

m, k1, . . . , km ∈ N, c1, c2 ∈ C, c1 6= 0 and c31+ c32 6= 0. Then c1In + c2
∏m

i=1 A
ki

i

is nonsingular.

Corollary 3.6 ([14]). Let A ∈ Cn×n be a g-p or hg-p, c1, c2 ∈ C, c1 6= 0 and

c31 + c32 6= 0. Then c1In + c2A is nonsingular and

(c1In + c2A)
−1 =

1

c31 + c32

(

c21A
3 − c1c2A+ c22A

2
)

+
1

c1
(In −A3).

In the following corollary, we present the form for the Moore-Penrose inverse
and we give some necessary and sufficient conditions for the invertibility of
linear combination c1A+ c2B, where A and B are two commuting hg-kp such
that AB = 0.

Corollary 3.7. Let c1, c2 ∈ C \ {0}. If A and B are commuting hg-kp such

that AB = 0, then

(c1A+ c2B)† =
1

c1
Ak +

1

c2
Bk.(11)

Furthermore, c1A + c2B is nonsingular if and only if n = r(A) + r(B) and in

this case (c1A+ c2B)−1 is given by (11).

If we specialize to k = 2 in the previous corollary we obtain Corollary 2.4 in
[14], which deals with g-p or hg-p.

In the following theorem, we give some necessary and sufficient conditions
for the invertibility of linear combination c1A+ c2B + c3C, where A,B and C

are commuting hg-kp such that BC = 0.
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Theorem 3.8. Let c1, c2, c3 ∈ C \ {0}, ck+1
1 + (−1)kck+1

2 6= 0 and ck+1
1 +

(−1)kck+1
3 6= 0. If A,B,C ∈ Cn×n are commuting hg-kp such that BC = 0,

then the following conditions are equivalent:

(i) c1A+ c2B + c3C is nonsingular,

(ii) Bk+1 + Ck+1 +A(In −Bk+1 − Ck+1) is nonsingular,

(iii) r(A(In −Bk+1 − Ck+1)) = n− (r(B) + r(C)).

Proof. By Theorem 2.1 and Corollary 3.9 from [4], we can suppose that B and
C have the form

B = U(B1 ⊕ 0t ⊕ 0)U∗, C = U(0r ⊕ C1 ⊕ 0)U∗,

where U ∈ Cn×n is unitary, B1 ∈ Cr×r, C1 ∈ Ct×t are nonsingular, Bk+1
1 = Ir

and Ck+1
1 = It. Since A,B,C are commuting hg-kp, then A has the form

A = U(A1 ⊕ A2 ⊕ A3)U
∗, where A1, A2, A3 are hg-kp and A1 commutes with

B1 and A2 commutes with C1. Now, we get

c1A+ c2B + c3C = U
(

(c1A1 + c2B1)⊕ (c1A2 + c3C1)⊕ c1A3

)

U∗.

Notice that c1A1 + c2B1 and c1A2 + c3C1 are nonsingular. Indeed, since
(c1A1)

k+1 + (−1)k(c2B1)
k+1 = ck+1

1 Ak+1
1 + (−1)kck+1

2 Ir, then (c1A1)
k+1 +

(−1)k(c2B1)
k+1 is nonsingular because it is the linear combination of an or-

thogonal projector and the identity matrix for all constants c1, c2 ∈ C such
that c2 6= 0 and ck+1

1 + (−1)kck+1
2 6= 0. From nonsingularity of (c1A1)

k+1 +
(−1)k(c2B1)

k+1 and Lemma 3.1, it follows that c1A1 + c2B1 is nonsingular.
Similarly, we can conclude that c1A2 + c3C1 is nonsingular for all constants
c1, c3 ∈ C such that c3 6= 0 and ck+1

1 + (−1)kck+1
3 6= 0. Now, it follows that

c1A+ c2B+ c3C is nonsingular if and only if A3 is nonsingular for all constants
c1, c2, c3 ∈ C \ {0} such that ck+1

1 + (−1)kck+1
2 6= 0 and ck+1

1 + (−1)kck+1
3 6= 0

and we can prove that (i)⇔(ii) and (i)⇔(iii). Indeed, A3 is nonsingular if
and only if Bk+1 + Ck+1 + A(In − Bk+1 − Ck+1) is nonsingular, so (i)⇔(ii).
On the other hand, A3 is nonsingular if and only if r(A3) = n − (r + t), i.e.,
r(A(In −Bk+1 − Ck+1)) = n− (r(B) + r(C)). So (i)⇔(iii). �

Note that Theorem 2.10 in [14] which deals with g-p or hg-p is the corollary
of the previous theorem.

In the following corollary, we study the problem of when a linear combination
c1In + c2A+ c3B of commuting hg-kp is nonsingular and we give the form of
the inverse in this case.

Corollary 3.9. Let c1, c2, c3 ∈ C, c1 6= 0, ck+1
1 + (−1)kck+1

2 6= 0 and ck+1
1 +

(−1)kck+1
3 6= 0. If A,B ∈ Cn×n are commuting hg-kp such that AB = 0, then

c1In + c2A+ c3B is nonsingular and

(c1In + c2A+ c3B)−1 =
1

ck+1
1 + (−1)kck+1

2

(

k
∑

i=0

(−1)ick−i
1 ci2A

i
)

Ak+1
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+
1

ck+1
1 + (−1)kck+1

3

(

k
∑

i=0

(−1)ick−i
1 ci3B

i
)

Bk+1

+
1

c1
(In −Ak+1 −Bk+1).(12)

Proof. The invertibility of c1In + c2A + c3B follows from Theorem 3.8. Also,
from the proof of Theorem 3.8 follows that c1In + c2A+ c3B has the form

c1In + c2A+ c3B = U
(

(c1Ir + c2A1)⊕ (c1It + c3B1)⊕ c1In−r−t

)

U∗,

where U ∈ Cn×n is unitary, A1 ∈ Cr×r, B1 ∈ Ct×t are nonsingular, A1B1 =
B1A1, A

k+1
1 = Ir and Bk+1

1 = It. By Corollary 3.3, we get

(c1Ir + c2A1)
−1 =

1

ck+1
1 + (−1)kck+1

2

(

k
∑

i=0

(−1)ick−i
1 ci2A

i
1

)

Ak+1
1

and

(c1It + c3B1)
−1 =

1

ck+1
1 + (−1)kck+1

3

(

k
∑

i=0

(−1)ick−i
1 ci3B

i
1

)

Bk+1
1 .

Now,

(c1In + c2A+ c3B)−1 = U
( 1

ck+1
1 + (−1)kck+1

2

(

k
∑

i=0

(−1)ick−i
1 ci2A

i
1

)

Ak+1
1

⊕
1

ck+1
1 + (−1)kck+1

3

(

k
∑

i=0

(−1)ick−i
1 ci3B

i
1

)

Bk+1
1

⊕
1

c1
In−r−t

)

U∗,

which is equivalent to (12). �

If we specialize to k = 2 in the previous corollary we obtain Theorem 2.11
in [14], which deals with g-p or hg-p.

Acknowledgement. The author would like to thank the anonymous reviewers
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