Bull. Korean Math. Soc. 51 (2014), No. 2, pp. 501-510
http://dx.doi.org/10.4134/BKMS.2014.51.2.501

CHARACTERIZATIONS AND THE MOORE-PENROSE
INVERSE OF HYPERGENERALIZED K-PROJECTORS

MARINA ToS1¢

ABSTRACT. We characterize hypergeneralized k-projectors (i.e., A¥ =
AT). Also, some representation for the Moore-Penrose inverse of a lin-
ear combination of hypergeneralized k-projectors is found and the in-
vertibility for some linear combinations of commuting hypergeneralized
k-projectors is considered.

1. Introduction

Let C™*™ denote the set of all n x m complex matrices. The symbols R(A)
and r(A) will denote the range (column space) and the rank of a matrix A,
respectively. For a matrix A € C"*", tr(A) and o(A) will denote the trace
and the spectrum of a matrix A, respectively. Also, we will use the following
notation: for k € N and k > 1, the set of complex roots of 1 shall be denoted by
oy, and if we set wy, = €>™/* then op = {w), w},...,wF™'}. The Moore-Penrose
inverse of A is the unique matrix A' satisfying the equations

(1) AATA= A, (2) ATAAT = AT (3) AAT = (AAT)*, (4) ATA = (ATA)".

I, will denote the identity matrix of order n and 0, will denote the null-
matrix of order r. Also, Ps denotes the orthogonal projector onto subspace S.
We use the notations CF', COP CEP CEP and CHEF for the subsets of C™*"
comnsisting of projectors (idempotent matrices), orthogonal projectors (Hermit-
ian idempotent matrices), EP (range-Hermitian) matrices, generalized and hy-
pergeneralized projectors, respectively, i.e.,

CP={AecCm™m: A% = A},
COP ={AeCV™: A= A= A"},
CEP — {AcC™": R(A) = R(A")} = {Ac C™": AAT = ATA},
COP = {AcCm: A2 = A%},
CHGP ={AeCm: A% = AT}
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Further, we will use the abbreviations “g-p” and “hg-p” for generalized
projector and hypergeneralized projector, respectively.

A matrix B € C"*"™ is said to be similar to a matrix A € C"*"™ if there exists
a nonsingular matrix P € C"*" such that B = P~ AP. If a matrix A € C"*"
is similar to a diagonal matrix, then A is said to be diagonalizable.

The concepts of g-p and hg-p were introduced by Grofl and Trenkler [11] who
presented very interesting properties of the classes of g-p and hg-p. A char-
acterization of nonnegative matrices such that A = A" is derived by Berman
[7].

In [5], the authors introduced the following concept: A square matrix A is
said to be a k-generalized projector (g-kp) if A¥ = A*. This class of matrices
obviously generalizes to the class of g-p. In [9], the g-kp have been generalized
on the set of all bounded linear operators on Hilbert space. They defined the
hypergeneralized k-projectors (hg-kp): Let H be a Hilbert space and B(H) the
all bounded linear operators on H. For A € B(H), A is said to be a hypergen-
eralized k-projector if there exists a natural number k£ > 1 such that A* = AT,
Also, they proved the following inclusion: The set of all g-kp is the subset of
all hg-kp. Hence, the class of g-kp may be generalized by considering the class
of hg-kp. This leads our interest to the subset of the class of square matrices
A with the property A* = A for k € N and k > 1, called as hypergeneralized
k-projectors. Specially, if kK = 2, we get the class of h-p (see [1], [2], [3], [11],
113, [14)).

In this paper, we characterize this class of matrices and, as simple corollaries,
we deduce the characterizations of hg-p presented in [2] and [3]. Also, we give
the form for the Moore-Penrose inverse and study the nonsingularity of a linear
combination ¢; A + ¢ B, where A and B are commuting hg-kp, as well as the
nonsingularity of a linear combination ¢; A+ co B+ ¢3C, where A, B and C' are
commuting hg-kp such that BC = 0. Also, as corollaries for commuting g-p
and hg-p, we give results presented in [14].

2. Characterizations of hypergeneralized k-projectors

In this section, we give some characterizations of hg-kp. First, we give
necessary and sufficient conditions that A is a hg-kp.

Theorem 2.1. Let A € C"*" and k € N, k > 1. Then the following statements
are equivalent:
(i) A is a hg-kp (i.e., A¥ = A1),
(ii) A is a EP matriz, 0(A) C or41 U {0} and A is diagonalizable;
(iii) A is a EP matriz and A2 = A.

Proof. Let us prove that (i) is equivalent to (iii).
(i)=(iii) Matrix A is EP because AAT = AA* = AFA = ATA. Also, matrix
A'is (k + 2)-potent because A*+2 = AAFA = AATA = A.



CHARACTERIZATIONS AND THE MOORE-PENROSE INVERSE 503

(iii)=>(i) Since A is an EP matrix, there exist a unitary matrix U € C**"
and a nonsingular matrix K € C"*" such that

(1) A=U(K 30U

(see [8]). Also,

(2) AT=UK e 0)U*.

From A*+2 = A, we have K* = K1, which implies that A is a hg-kp. Hence,
(i) holds.

(ii)<=>(iii) This follows from the well known fact that A**2 = A if and only
if A is diagonalizable and the spectrum of A is contained in o471 U {0} (see [6,
Theorem 2.1]).

From Theorem 2.1, it follows that A is a hg-kp if and only if
(3) A=UKa0)U",
where U € C™*" is a unitary matrix and K € C"*" is a nonsingular matrix
such that K*+1 =T,.

If Ais a hg-kp, then A¥*1 = AAT ie., A**! is the orthogonal projector
onto R(A). Also, the converse implication is valid.

Theorem 2.2. Let A € C"*". Then A is a hg-kp if and only if A**! is the
orthogonal projector onto R(A).

Proof. (<) By Corollary 6 in [12], every matrix A € C™*™ of rank r has the
form

(4) AU{

DK DL .,
0 O]U’

where U € C™*™ is unitary, D = diag(A11,,, ..., AIy,) is the diagonal matrix
of nonzero singular values of A, A\y > o> - > X\ >0, 11 +r9+---+ry =71
and K € C™*", L € C™*("=7) gsatisfy

KK*+ LL* =1I,.
From (4), it follows that

and K*D™1 0
ATU{ D1 0 ]U*.
Hence,
AAT = PRy =U(I, & 0)U".
Now, Pr(a) = A" if and only if (DK)**! = I, and L = 0. Thus, A has the
form (3), which is equivalent to the fact that A is a hg-kp. O

Corollary 2.3. Let A € C"*" be a hg-kp. Then r(A) = tr(A¥*1).
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Proof. From Theorem 2.2 and (3) we get r(A) = r(A*+1) = tr(AF1). O

The converse result is invalid, as can be seen by taking

11
=lo1)
in which case r(A) = tr(AF) and AT = A=1 #£ A* for k € N. Hence, A is not a
hg-kp.
As corollaries, we get Theorem 1 and Corollary 1 in [3].

Corollary 2.4 ([3]). Let A € C"*". Then A € CHCGP if and only if A3 is the
orthogonal projector onto R(A).

Corollary 2.5 ([3]). Let A € CHGP . Then r(A) = tr(A3).
By definition of the Moore-Penrose inverse, the group inverse and the Drazin
inverse, it is easy to see that if A is a hg-kp, then
At = Af = Ad = Ak = gmE+D+E m € N.
Generally A is a hg-kp if and only if its Moore-Penrose inverse A is:

Theorem 2.6. Let A € C"*". The following are equivalent:
(i) A is a hg-kp;

(ii) A* is a hg-kp;

(iii) A" is a hg-kp.
Proof. Let A and At be given by (1) and (2), respectively.

(i)=(ii) This follows from K* = K~! & (K*)¥ = (K*)~L.

(ii)=(i) Since (A*)* = A, the proof follows directly by (i)=-(ii) replacing A
by A*.

(i)=(iii) This follows from K* = K~1 & K = (K1),

(iii)=(i) Since (A")" = A, the proof follows directly by (i)=-(iii) replacing
A by Af. O

As a corollary we get the part of Theorem 5 in [2].
Corollary 2.7 ([2]). Let A € C"*™. Then
Ae CHEP o At ¢ cHEP,

The following theorem singles out a sufficient condition for the equivalence
of A being a hg-kp and A being an EP matrix.

Theorem 2.8. Let A € C™"*™. Assume there exists B € C"*" such that B is
a hg-kp and A2 = AB or A?2 = BA. Then A is a hg-kp if and only if A € CEP.

Proof. (=) This follows from Theorem 2.1.
(<) Since B is a hg-kp, it is clear that A? = AB leads to

A? = ABB'B = AB*F+2 = Ak+3,
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Now, by using that AAT = ATA and ATAAT = A" and multiplying A2 = A*+3
three times by Af, we have that AT = AF. The proof with the condition
A? = BA follows similarly. (]

As the following corollary, we get Theorem 8 in [3].

Corollary 2.9 ([3]). Let A, B € C"*™ be such that B € CHGP and A?> = AB
or A2 = BA. Then A € CHCP if and only if A € CEP.

3. The Moore-Penrose inverse and the invertibility of a linear
combination of commuting hypergeneralized k-projectors

It is well known that any g-kp is a hg-kp. So, following results also hold for
g-kp.

The following lemma is furthermore very useful in this section.

Lemma 3.1. Let X,Y € C™*" and c¢1,co € C. If Xkt = YF1 = [ and
XY =YX, then
(6) (1 X + Y)Y (=1 XY = (T + (1) ).
1=0
Proof. The result follows from
k
(e1X 4 oY) Z(—l)ic’f_icéXk’iYi = LI ()Rt ly R
1=0
= (@ (C)rET L. O

In the following theorem, we present the form for the Moore-Penrose inverse
and we give some necessary and sufficient conditions for the invertibility of the
linear combination ¢; A + co B, where A and B are two commuting hg-kp.

Theorem 3.1. Let A € C"™™ and B € C"*™ be commuting hg-kp and let
c1,¢2 € C\ {0} such that &+ (=1)*c5* #£0. Then

k
1 . o .
1A+ B = ( -1 chﬂcZAk_le)Ak"HBk"H
(1 2 ) c]f+1+(71)kc§+1 ;( ) 1 2
1 1
(7) +—Ak(In—Bk+l)+—Bk(In—Ak+1).
C1 (6]

Furthermore, c1 A+ caB is nonsingular if and only if n = r(A) +r(B) —r(AB)
and in this case (c1 A+ caB)™1 is given by (7).

Proof. By Theorem 2.1 and Corollary 3.9 from [4], we can suppose that A and
B have the form

A=U(A1®A00,00)U", B=U(B1®0s® B2 ®0)U",
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where U € C"*" is unitary, A;, By € C"™*", Ay € C¥*¢ By € C'*! are non-
singular, A1 By = B1A;, ANl = Bl — [ - AN — [ and BY*! = I,. Also,
notice that

8) A =Ul el ®0,®0)U* B ' =UI, 00,0 ®0)U".
Now, we have
(9) ClA +coB = U((ClAl + CQBl) D ClAQ @ coBy B On—(T+s+t))U*'

By Lemma 3.1, we get that ¢; A1 + co By is nonsingular and that

k
1 S o
-1 _ i k—i i gk—ipni
(c1A1 4+ c2By)™ = c’erl n (—1)’“0’2”1 '520(—1) ey AT BY.

Also, c1 Ay and ¢y By are nonsingular and (c1A;)~1 = éAé and (cpB2)~! =
éBg. Now, we have

(ClA + CQB)Jr

k
1 ) o o 1 1
= U( E —1)yi i A B Y — Ak —BEF o O)U*.
(C}f+1 ( l)kcngl i:O( ) 1 2401 1) 1 2 o 2

Finally, using (8), we get (7).

Also, from (9) we can conclude that ¢; A + c2 B is nonsingular if and only if
n=r+t+s. Since r(A) =r+t, r(B) =r+ s and r(AB) = r, we get that
c1A + ¢2B is nonsingular if and only if n = r(A) + r(B) — r(AB). O

In the following corollaries, we study the problem of when linear combina-
tions c11,, + ¢ H?ll Af and ¢11, + c2A are nonsingular, where {4;}", is a
finite commuting family of hg-kp and A is a hg-kp, respectively. First, we state
the following lemma:

Lemma 3.2. Let A € C"*" and B € C"*™ be commuting hg-kp. Then AB is
a hg-kp.
Proof. Since A and B are two commuting hg-kp, then BBTA*AB = A*AB
and ABB*AYA = ABB*, so (AB)" = ATBT (see [10]). Now,

(AB)! = ATBT = A*B* = (AB)*.
Hence, AB is a hg-kp. O
Corollary 3.2. Let all of A; € C"*"™ i =1,m be commuting hg-kp, m, k1, ...,

km €N, c1,c0 € C, c1 #0 and c’f“ + (—1)’“0’2”1 #0. Then c1l, +c2 112 Af
s monsingular.

Proof. From Lemma 3.2 we get: if {4;}", is a finite commuting family of
hg-kp, then Hzl Af is also a hg-kp, where m, k1, ...,k € N. Now, the proof
follows from Theorem 3.1. O
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Corollary 3.3. Let A € C"*™ be a hg-kp, c1,c2 € C, ¢1 # 0 and c’f“ +
(—1)’%5"'1 #£0. Then c11, + co A is nonsingular and

k

(Do(1yichicpar)alet 4

=0

1

= I, — A1),
A+ (—1)k ( )

(Clln +02A)_1

1
C1

As corollaries we get Theorem 2.1, Proposition 2.3 and Theorem 2.2 in [14],
respectively.

Corollary 3.4 ([14]). Let A € C"*™ and B € C™*" be commuting g-p or hg-p
and let c1,co € C\ {0} such that c3 + c3 # 0. Then

(1A +cB)f = (C%AQBB —c12AB + chBBQ)

3+ c3
1 1
(10) + —A*(I, — B*) + —B*(I,, — A®).
C1 C2
Furthermore, c1 A+ caB is nonsingular if and only if n = v(A) +1(B) —r(AB)
and in this case (c1 A + c2B)™1 is given by (10).

Corollary 3.5 ([14]). Let all of A; € C™*™, i = 1, m be commuting g-p or hg-p,
myki,....km €N, c1,c0 €C, ¢ #0 and ¢3 +c3 #0. Then al,+e [ Af"
is nonsingular.

Corollary 3.6 ([14]). Let A € C™*" be a g-p or hg-p, c1,¢2 € C, ¢1 # 0 and
c$ +c3#0. Then cil, + c2 A is nonsingular and

1 1
ceil, +cA) = —(02A370 c A+c2A2) + — (I, — A%).
(1n 2) C?-I—C% 1 162 2 Cl(n )

In the following corollary, we present the form for the Moore-Penrose inverse
and we give some necessary and sufficient conditions for the invertibility of
linear combination ¢; A 4+ co B, where A and B are two commuting hg-kp such

that AB = 0.

Corollary 3.7. Let ¢1,c0 € C\ {0}. If A and B are commuting hg-kp such
that AB = 0, then

1 1
(11) (c1A+ ¢oB)f = — A + — Bk,

C1 C2
Furthermore, c1 A + c2B is nonsingular if and only if n = r(A) 4+ r(B) and in
this case (c1 A+ coB)™! is given by (11).

If we specialize to k = 2 in the previous corollary we obtain Corollary 2.4 in
[14], which deals with g-p or hg-p.

In the following theorem, we give some necessary and sufficient conditions
for the invertibility of linear combination ¢; A + co B 4 ¢3C, where A, B and C'
are commuting hg-kp such that BC' = 0.
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Theorem 3.8. Let c1,ca,¢c3 € C\ {0}, &+ (=1)*ch™ £ 0 and &+
(—1)kc§+1 #£0. If A,B,C € C"™" are commuting hg-kp such that BC' = 0,
then the following conditions are equivalent:
(i) 1A+ caB+ ¢3C is nonsingular,
(i) B! 4 CkL + A(L, — B*! — C*k*1Y) is nonsingular,
(iii) r(A(I, — B¥*t — C**1)) =n — (x(B) +1(C)).

Proof. By Theorem 2.1 and Corollary 3.9 from [4], we can suppose that B and
C have the form

B=UB1®0:020)U", C=U0,CL®0)U",

where U € C"*" is unitary, B; € C"™*", C; € C*** are nonsingular, B¥*1 = I,
and Cf“ = I;. Since A, B,C are commuting hg-kp, then A has the form
A=U(A ® Ay ® A3)U*, where Ay, Aa, As are hg-kp and A; commutes with
B; and As commutes with C;. Now, we get

ClA + CQB + 030 = U((ClAl + CQBl) D (ClAQ + 0301) D ClAg)U

Notice that c;A; 4+ 2By and c¢1As + ¢3Cp are nonsingular. Indeed, since
(ClAl)kJrl + (71)k(0231)k+1 = le+1A]f+1 + (71)’605-‘_1]7«, then (ClAl)kJrl +
(=1)*(caB1)¥*! is nonsingular because it is the linear combination of an or-
thogonal projector and the identity matrix for all constants c¢q1,co € C such
that cp # 0 and i 4 (=1)%c¢5™ £ 0. From nonsingularity of (c;A4;)*t! +
(—=1)*(c2By)¥*! and Lemma 3.1, it follows that ¢;A; + c2B; is nonsingular.
Similarly, we can conclude that ¢y As + ¢3C; is nonsingular for all constants
c1,¢c3 € C such that c3 # 0 and ¢f™ + (=1)%c™ # 0. Now, it follows that
c1A+ caB+ c3C is nonsingular if and only if A3 is nonsingular for all constants
c1,c2,¢3 € C\ {0} such that &t 4 (—1)Fch™ #£ 0 and T 4 (~1)Fcit #£0
and we can prove that (i)<(ii) and ()@(m) Indeed, Ag is nonsingular if
and only if B! 4+ Ck1 4 A(I,, — B¥! — C**+1) is nonsingular, so (i)<(ii).
On the other hand, Aj is nonsingular if and only if r(A3) = n — (r + ), i.e

r(A(I, — B*1 — C* 1)) = n — (1(B) +1(C)). So (i)« (iii). O

Note that Theorem 2.10 in [14] which deals with g-p or hg-p is the corollary
of the previous theorem.

In the following corollary, we study the problem of when a linear combination
c1ly, + c2 A + ¢3B of commuting hg-kp is nonsingular and we give the form of
the inverse in this case.

Corollary 3.9. Let c1,c2,c3 € C, ¢1 # 0, & 4 (=1)FcE™ £ 0 and &5 +
(—1)kch k1 £ 0. If A, B € C"™ ™ are commuting hg-kp such that AB = 0, then
cl, + 02A + c3 B is nonsingular and
-1 1 : i k—i i g\ gk+1
(c1ln +c2A+c3B)™ = Cllc+1 + (71>kcl2€+1 (Z(*U A )A

i=0
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k
+ ( -1 zckfzcz Bz)Bk—i-l
clerl + (—1)’%5Jrl Zz:;( Jlere
1
(12) 4 _(In o Ak+1 _ Bk+1).
Cc1

Proof. The invertibility of ¢1I,, + c2 A + ¢3B follows from Theorem 3.8. Also,
from the proof of Theorem 3.8 follows that ¢i1,, + co A + c3 B has the form

c1l, + oA+ c3B = U((ClL« + CQAl) &) (Cllt + C3Bl) (&) Clln—r—t)U*,

where U € C™*" is unitary, A; € C"*", B; € C**? are nonsingular, A;B; =
By Ay, A’f“ = I, and Bf“ = I;. By Corollary 3.3, we get
k

1 o
ol +cpAy) 7t = (Do(-1ychichay) Attt
( 1 2 1) c]f+1 + (—1)k0§+1 ;( ) 1 2431 1
and
1 k
-1 _ i k—i i pi) pk+1
(el + @B = (2(1) ke, BY) B
Now,
1 b o
(culn + 2+ coB)™ = U(ck+1 +(=1)kch™ (Do(1yiehesar) ab+
1 - 2 i=0
1 k
® (Y- Bl B
AT (1R ;
1
o — n—T—t)U*a
C1
which is equivalent to (12). O

If we specialize to £ = 2 in the previous corollary we obtain Theorem 2.11
in [14], which deals with g-p or hg-p.
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