Browse > Article
http://dx.doi.org/10.4134/BKMS.2014.51.2.501

CHARACTERIZATIONS AND THE MOORE-PENROSE INVERSE OF HYPERGENERALIZED K-PROJECTORS  

Tosic, Marina (Faculty of Sciences and Mathematics University of Nis)
Publication Information
Bulletin of the Korean Mathematical Society / v.51, no.2, 2014 , pp. 501-510 More about this Journal
Abstract
We characterize hypergeneralized k-projectors (i.e., $A^k=A^{\dag}$). Also, some representation for the Moore-Penrose inverse of a linear combination of hypergeneralized k-projectors is found and the invertibility for some linear combinations of commuting hypergeneralized k-projectors is considered.
Keywords
hypergeneralized k-projector; linear combination; the Moore-Penrose inverse; nonsingularity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Benitez, Moore-Penrose inverses and commuting elements of C*-algebras, J. Math. Anal. Appl. 345 (2008), no. 2, 766-770.   DOI   ScienceOn
2 O. M. Baksalary, Revisitation of generalized and hypergeneralized projectors, Statistical Inference, Econometric Analysis and Matrix Algebra VI (2009), 317-324.
3 J. K. Baksalary, O. M. Baksalary, X. Liu, and G. Trenkler, Further results on generalized and hypergeneralized projectors, Linear Algebra Appl. 429 (2008), no. 5-6, 1038-1050.   DOI   ScienceOn
4 S. L. Campbell and C. D. Meyer Jr., Generalized Inverses of Linear Transformations, Pitman, London, 1979.
5 J. Benitez and N. Thome, Characterizations and linear combinations of k-generalized projectors, Linear Algebra Appl. 410 (2005), 150-159.   DOI   ScienceOn
6 J. Benitez and N. Thome, {k}-group periodic matrices, SIAM. J. Matrix Anal. Appl. 28 (2006), no. 1, 9-25.   DOI   ScienceOn
7 C. Y. Deng, Q. H. Li, and H. K. Du, Generalized n-idempotents and Hyper-generalized n-idempotents, Northeast. Math. J. 22 (2006), no. 4, 387-394.
8 T. N. E. Greville, Note on the generalized inverse of a matrix product, SIAM Rev. 8 (1966), 518-521.   DOI   ScienceOn
9 J. GroB and G. Trenkler, Generalized and hypergeneralized projectors, Linear Algebra Appl. 264 (1997), 463-474.   DOI   ScienceOn
10 R. E. Hartwig and K. Spindelbock, Matrices for which A* and $A{\dagger}$ commute, Linear Multilinear Algebra 14 (1983), no. 3, 241-256.   DOI   ScienceOn
11 M. Tosic and D. S. Cvetkovic-Ilic, The invertibility of the difference and the sum of commuting generalized and hypergeneralized projectors, Linear Multilinear Algebra 61 (2013), no. 4, 482-493.   DOI   ScienceOn
12 M. Tosic, D. S. Cvetkovic-Ilic, and C. Deng, The Moore-Penrose inverse of a linear combination of commuting generalized and hypergeneralized projectors, Electron. J. Linear Algebra 22 (2011), 1129-1137.
13 J. K. Baksalary, O. M. Baksalary, and X. Liu, Further properties of generalized and hypergeneralized projectors, Linear Algebra Appl. 389 (2004), 295-303.   DOI   ScienceOn
14 A. Berman, Nonnegative matrices which are equal to their generalized inverse, Linear Algebra Appl. 9 (1974), 261-265.   DOI   ScienceOn