• Title/Summary/Keyword: inverter system

Search Result 2,788, Processing Time 0.026 seconds

Flux Weakening Control for Surface Mounted Permanent Magnet Synchronous Machine Driven by Dual Inverter (이중 인버터를 이용한 표면 부착형 영구자석 동기전동기의 약자속 제어)

  • Kim, Youngnam;Lee, Yongjae;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.437-442
    • /
    • 2013
  • For open-end permanent magnet synchronous machine(PMSM) with dual inverter system, where one inverter is connected to the source and the other is flying, the dc link voltage of the flying inverter can be boosted through the machine. For this reason, when compared with single inverter drive system, higher voltage can be applied to PMSM, and higher torque can be generated in the flux weakening region. In this case, however, active and reactive powers are separately supplied by each inverter to maintain the dc link voltage of flying inverter. Therefore, the required flux weakening control is different from the conventional method for a single inverter drive system. This paper proposes the novel flux weakening control method which maximizes the active voltage component in a dual inverter PMSM drive system. The proposed method was demonstrated and verified through experimental results.

Compact Wireless IPT System Using a Modified Voltage-fed Multi-resonant Class EF2 Inverter

  • Uddin, Mohammad Kamar;Mekhilef, Saad;Ramasamy, Gobbi
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.277-288
    • /
    • 2018
  • Wireless inductive power transfer (IPT) technology is used in many applications today. A compact and high-frequency primary side inverter is one of the most important parts of a WPT system. In this study, a modified class EF-type voltage-fed multi-resonant inverter has been proposed for WPT application at a frequency range of 85-100 kHz. Instead of an infinite input choke inductor, a resonant inductor is used to reduce loss and power density. The peak voltage stress across the MOSFET has been reduced to almost 60% from a class-E inverter using a passive clamping circuit. A simple yet effective design procedure has been presented to calculate the various component values of the proposed inverter. The overall system is simulated using MATLAB/SimPowerSystem to verify the theoretical concepts. A 500-W prototype was built and tested to validate the simulated results. The inverter exhibited 90% efficiency at nearly perfect alignment condition, and efficiency reduced gradually with the misalignment of WPT coils. The proposed inverter maintains zero-voltage switching (ZVS) during considerable load changes and possesses all the inherent advantages of class E-type inverters.

A Study on Boost Type Single-Phase Inverter System for Compensation of Voltage Sag (Voltage Sag 보상을 위한 승압형 단상 인버터 시스템에 관한 연구)

  • Seo, Young-Min;Lee, Seung-Yong;Hong, Soon-Chan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.50-57
    • /
    • 2011
  • This paper proposes a boost type single-phase inverter system to compensate the voltage sag appeared on source side. The proposed system is composed of a boost converter, a PWM inverter, and a bypass diode. If the voltage sag has appeared in input voltage, the boost converter would be operated to compensate it in the proposed system. The boost converter would not be operated when the magnitude of input voltage is more than 0.9 pu. The output voltage is kept constant by a direct-quadrature frame controller in the inverter. A 300 W class boost type inverter system was simulated, and the validity of the proposed system was verified by carrying out experiments.

High-Frequency DC Link Inverter for Grid-Connected Photovoltaic System (고주파링크방식을 이용한 PV용 PCS의 고찰)

  • Jung, Young-Seok;Yu, Gwon-Jong;Jung, Myoung-Woong;Choi, Jae-Ho;Choi, Ju-Yeop
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1313-1315
    • /
    • 2002
  • This paper proposes an inverter for the grid-connected photovoltaic system based on the transformer-less inverter. This system consists of a high frequency inverter bridge, high frequency transformer, diode bridge rectifiers, a DC filter, a low frequency inverter bridge, and an AD filter. The high frequency inverter bridge switching at 20kHz is used to generate bipolar PWM pulse, which is subsequently rectified by diode bridge rectifiers to result in a full-wave rectified sine wave. Finally, it is unfolded by a low frequency inverter bridge to result in a 60Hz sine wave power output. In this paper, the control algorithm for synchronous current feedback control method and a maximum power point tracking (MPPT) method using DSP are described. And, the simulation and experimental results are shown to verify the validity of the proposed system.

  • PDF

A study of regenerative inverter system with capability of harmonic reduction (고조파 저감 능력을 가진 회생용 인버터 시스템 연구)

  • Choi, Chang-Youl;Bae, Chang-Hwan;Jang, Su-Jin;Song, Sang-Hun;Won, Cung-Yeun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.443-448
    • /
    • 2005
  • This paper proposed a regeneration inverter system, which can regenerate the excessive power form dc bus line to ac source for traction system. The proposed regeneration inverter system for dc traction can reduce harmonics which are include to ac current source. The regenerative inverter is operated as two modes. As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. In the paper, a regeneration inverter used PWM DC/AC converter algorithm. And an active power filter used p-q theory. The simulation was composed as a prototype model[3kW]. Simulation results show that two algorithm can be used to real model[100kW]. Finally, the inverter was successfully operated as regeneration mode.

  • PDF

Design and Control of a Bidirectional Power Conversion System with 3-level T-type Inverter for Energy Storage Systems

  • Sung, Won-Yong;Ahn, Hyo Min;Oh, Chang-Yeol;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.326-332
    • /
    • 2018
  • In this paper, the design process and the control method of the power conversion system (PCS) that consists of a bidirectional DC-DC converter and a 3-level T-type inverter for an energy storage system is presented. Especially the design method of the output LCL filter for a 3-lvel T-type inverter without complex mathematical process are proposed. The validity of the control method and design process in this paper are verified through simulation and experimental analysis.

Power Conditioning for a Small-Scale PV System with Charge-Balancing Integrated Micro-Inverter

  • Manoharan, Mohana Sundar;Ahmed, Ashraf;Seo, Jung-Won;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1318-1328
    • /
    • 2015
  • The photovoltaic (PV) power conditioning system for small-scale applications has gained significant interest in the past few decades. However, the standalone mode of operation has been rarely approached. This paper presents a two-stage multi-level micro-inverter topology that considers the different operation modes. A multi-output flyback converter provides both the DC-Link voltage balancing for the multi-level inverter side and maximum power point tracking control in grid connection mode in the PV stage. A modified H-bridge multi-level inverter topology is included for the AC output stage. The multi-level inverter lowers the total harmonic distortion and overall ratings of the power semiconductor switches. The proposed micro-inverter topology can help to decrease the size and cost of the PV system. Transient analysis and controller design of this micro-inverter have been proposed for stand-alone and grid-connected modes. Finally, the system performance was verified using a 120 W hardware prototype.

A Railway signal power supply system using the module type power supply (모듈형 파워 서플라이를 이용한 철도 신호용 전원장치)

  • Roh Sung-Chae;Lee Yoo-Kyung;Kim Soo-Hong
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.836-842
    • /
    • 2005
  • This paper presents a power supply of railway signal system using a Z-source inverter. The Z-source inverter overcomes the conceptual and theoretical barriers and limitations of the tradition voltage-source inverter and current-source inverter and provides novel power conversion concept. The Z-source inverter is a Buck-Boost inverter that has a wide range of obtainable voltage.

  • PDF

A Study of Buck-Boost Current-Source PWM Inverter for Utility Interactive Photovoltaic Generation System (태양광발전과 계통연계를 위한 Buck-Boost 전류원형 PWM 인버터에 관한 연구)

  • Yang Geun-Ryoung;Kang Feel-Soon;Kim Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.63-68
    • /
    • 2002
  • In a utility interactive photovoltaic generation system, a PWM inverter is used for the connection between the photovoltaic arrays and the utility. The do current becomes pulsated when the conventional inverter system operates in the continuous current mode and dc current pulsation causes the distortion of the ac current waveform. To reduce pulsation of dc input current, This paper presents a Buck-Boost PWM power inverter and its application for residential photovoltaic system. The PWM power inverter is realized by combining two sets of a high frequency Buck-Boost chopper and by making it operate in the discontinuous conduction mode. In this paper, we show the Buck-Boost PWM power inverter circuit, its equivalent circuit and basic differential equations and the power flow characteristics are clarified when the proposed Inverter is interconnected with the utility lines. In conclusion, the proposed inverter system provides a sinusoidal ac current for domestic loads and the utility line with unity power factor

  • PDF

A Study on the Reliability and Optimal Control of Half-Bridge Inverter for Induction Beating System (유도 가열용 Half-Bridge 인버터 시스템의 신뢰성 향상 및 최적제어에 관한 연구)

  • 유상봉
    • Journal of the Korean Professional Engineers Association
    • /
    • v.33 no.1
    • /
    • pp.94-105
    • /
    • 2000
  • The purpose of this paper is to obtain the improved reliability and optimal control of the half-bridge inverter for induction heating system. Parasitic inductance components within the inverter circuit for induction heating including the loss-less turn-off snubber capacitor considerably affect stable operation and noise level of the system. This paper analyzes the effect of the inductance in detail and presents a new snubber configuration suitable for the half-bridge inverter to effectively reduce it. In the half-bridge inverter for induction heating the capacity of the loss-less snubber capacitor determines the switching losses because the zero voltage turn-on switching is used. However, the increase of the capacitor is limited by the system specifications, so that it is not easy work to reduce the switching loss. To effectively overcome the limitation, this paper introduces an active auxiliary resonant circuit suitable for the half-bridge inverter circuit, which operates actively according to the variation of load condition. It is also one of the most important study issues for the half-bridge inverter driven induction heater that the development of optimal control scheme considering varied load condition should be achieved. The control strategy ensures a very stable operation of overall inverter system and zero voltage turn-on switching irrespective of sensitive load parameter variations, in particular, even under the non-magnetic materials.

  • PDF