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Abstract – In this paper, the design process and the control method of the power conversion system 
(PCS) that consists of a bidirectional DC-DC converter and a 3-level T-type inverter for an energy 
storage system is presented. Especially the design method of the output LCL filter for a 3-lvel T-type 
inverter without complex mathematical process are proposed. The validity of the control method and 
design process in this paper are verified through simulation and experimental analysis. 
 

Keywords: Energy storage system (ESS), Multi-level inverter, 3-level T-type Inverter, Grid-
connected inverter, bidirectional inverter  

 
 
 

1. Introduction 
 
A power conversion system (PCS) for an energy storage 

system (ESS) requires high-quality output currents. 
Therefore, the volume of the output low pass filter (LPF) 
should be bulky or switching frequency of the grid-
connected inverter should be increased. However, the 
bulky LPF causes a decrease in power density. On the other 
hand, an increased switching frequency causes an increase 
in switching loss of the power semiconductor. Therefore, a 
3-level inverter such as a neutral point clamped (NPC) 
inverter, a flying capacitor inverter, and a T-type inverter 
has the advantages over a 2-level inverter in terms of high 
quality of output currents [1-4]. 

Although the conduction loss increases in a 3-level 
inverter due to the additional neutral-point-switches, it has 
been applied to high-voltage grid-connected systems such 
as those used in wind-power generation. The main reason 
is that the number of output voltage levels in the 3-level 
inverter is more than that of the 2-level inverter. Therefore, 
a 3-level inverter has a low electromagnetic interference 
(EMI), a small volume of the output filter size, a low 
switching loss, and a low THD of the output voltage 
compared to a 2-level inverter [1-4]. Considering these 
factors, a low-voltage and low-power PCS for an ESS with 
a 3-level inverter is investigated in this study.  

The control methods for the charging and discharging 
operations of the PCS are presented in this paper. In 
addition, a design process of the output LCL filter for the 
3-level inverter is suggested. Previous studies have not 
considered the optimal design method of the output filter 

for a 3-level inverter seriously [5-9]. Therefore, this paper 
describes a method to reduce the size of the output filter in 
detail. 

Finally, control methods of the PCS for the ESS with the 
3-level inverter and the design process of the LCL filter are 
verified by simulation and experimental analysis. 

 
 

2. Control Systems of PCS for ESS 
 
The target system in this study is a 5-kW PCS consisting 

of the 3-level inverter and the bidirectional buck-boost 
converter as shown in Fig. 1. In case of the 3-level inverter, 
various topologies can be applied, such as a NPC inverter, 
a flying capacitor inverter, and a T-type inverter. Among 
them, the 3-level inverter is advantageous in terms of loss 
because the number of power semiconductor devices or 
passive components is small than the others [1]. Therefore, 
the 3-level T-type inverter is used in the target system. 

The control targets of the bidirectional buck-boost 
converter and the 3-level inverter according to the 
operation modes of the ESS are listed in Table 1. The ESS 
operates in charging mode during daytime and discharging 
mode at night. Therefore, the PCS can be driven by the 
control methods listed in Table 1, regardless of the transfer 
time due to the operation mode change of the ESS.  

The configurations of the controllers for both the modes 
are shown in Fig. 2. In the charging mode, the controller of 
bidirectional buck-boost converter in Fig. 2(a) controls the 
battery current and voltage. On the other hand, the 
controller of the 3-level T-type grid-connected inverter in 
Fig. 2(b) controls the grid currents and the DC-link voltage.  †  Corresponding Author: Department of Electrical and Computer 
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Table 1. Control targets of the PCS  

Operation mode DC-DC converter 3-level inverter 

Charging Battery voltage 
Battery current 

DC-link voltage 
Grid current 

Discharging DC-link voltage Grid current 
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(b) Controller of grid-connected inverter 

Fig. 2. Configuration of PCS controller 
 
In case of the discharging mode, the bidirectional buck-

boost converter controls the DC-link voltage and the 3-
level T-type grid-connected inverter controls the grid 
currents. It is to be noted that the controllers of the 
inverters shown in Fig. 2(b) require a feedforward because 
large grid currents are injected into the DC-link without 
it. In addition, a balancing algorithm is required for the 
DC-link. In case of the 3-level T-type inverter, neutral 
point switches cause unbalance of the separated DC-link 
voltages, as shown in Fig. 1. This unbalancing problem 
can be solved by adding an offset voltage to the reference 
voltage of inverters. For example, when the high-side DC-
link voltage is higher than that of the low-side, a positive 

offset voltage is added to the low-side reference voltage. 
As a result, the low-side voltage increases and the high-
side voltage decreases. Using this method, controllers of 
the inverter in Fig. 2 and 3 perform DC-link balancing 
control [1, 10, 11]. 

 
 

3. Design of LCL Filter for 3-level T-type Inverter  
 
As mentioned in the previous section, the output filter of 

a 3-level T-type inverter can be designed to be smaller than 
that of a 2-level inverter. However, previous studies are not 
serious considered about the optimal design process of an 
LCL filter. Therefore, the design process of an LCL filter 
for a 3-level T-type inverter is suggested in this section. 

 
3.1. Output characteristics of 3-level T-type inverter 

 
In order to derive an optimal design process of the LCL 

filter, an analysis of the output current and voltage of the 
3-level T-type inverter is required. First, characteristics 
of the output voltage by conditions of duty (Da), the DC-
link voltage (Vdc), the inverter output line-to-line current 
(iLL.P) and the grid line-to-line voltage (Vg.LL) should be 
analyzed. 
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(b) 0.5Vdc<Vg.LL<Vdc 

Fig. 3. Line-to-line voltages of the 3-level T-type inverter 
 

 
Fig. 1. Configuration of PCS for ESS 
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Fig. 3 shows line-to-line voltage of 3-level T-type 
inverter (VLL.INV) by reference voltages (Vref1 and Vref2). In 
this figure, the Da is on-duty period by Vref1.  

The magnitude of the output line-to-line voltage in the 
Dk is the same with the off-duty (1-Da) period because of 
Vref2. The phase difference between Vref1 and Vref2 is always 
2π/3, since the reference voltages are balanced 3-phase 
voltages. The conditions that the output current ripple 
(iLL.INV) is maximum value is when the current increase 
time and the current decrease time is the same [12]. These 
conditions are presented in Eq. (1) and in this equation, 
ma is the amplitude modulation index. In Eq. (1), when 
the values of ωt are 0.7401π or -0.1638π, the current ripple 
of iLL.P is the maximum value. Therefore, the amplitude of 
Vref1 is 0.729ma, Vref2 is 0.229ma and the other is -0.957ma 
(Vref3). 

 

 1 2
2sin( ) sin( ) 0.5
3ref ref aV V m t tw f w f pé ù- = + - + - =ê úë û

 (1) 

 
Fig. 4 shows inverter phase voltage of 3-phase T-type 

inverters (VINV). In this figure, the influence of Vref3 can 
be ignored in the phase ripple current because the ma of 
Vref3 is relatively close to 1 than Vref1 and Vref2 as derived 
by Eq. (1).  

Eqs. (2)-(4) show the relationship between voltage and 
ripple current in Fig. 4(a). In these formulae, Δip.inc is 
infinitesimal changes of increasing output phase current in 
each section in Fig. 4(a). The decrease ripple current within 
(1-Da)T and DkT is represented by the increase ripple 
current (ΔiP.inc) using the ratio of Da , Dk , and reference 
voltages (Vref1 and Vref2).  
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In the condition of Fig. 4(b), the equations of Δip.inc is 

presented in Eqs. (5)-(7). 
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Using Eqs. (2)-(7), the maximum ripple of iINV (Δip.max) 

in Fig. 4 can be derived as Eq. (8). 
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Based on this analysis, the optimal design process of 

the LCL filter for a 3-level T-type inverter can be derived. 
The derived Δip.max is equivalent to current ripples of filter 
inductors. By this result, optimal parameters of inductors 
in the LCL filter are calculated. 

 
3.2. LCL filter design for 3-level T-type grid-

connected inverter 
 
First of all, the inverter-side inductor (Li) can be derived 

by (8). It can be designed by using allowable maximum 
current ripple of inverter-side current (ΔiINV.max) at the 
switching frequency ( fs) as shown in (9).  

The filter capacitor (Cf ) can be calculated by a rated 
power of the single phase (Prate) and a ratio of allowable 
reactive power (β) at the fundamental frequency of the grid 
(fgrid) as depicted in Eq. (10). 
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Finally, the grid-side inductor (Lg) can be calculated 

from the short circuit model in the high-frequency band 
shown in Fig. 5. In this figure, α is the ratio of the inverter-
side to the grid-side current, and iINV.h is the high-order 
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Fig. 4. Phase voltages of the 3-level T-type inverter 

Lg

CfiINV.max

iC.h iINV.max

 
Fig. 5. Equivalent single-phase short circuit model in high-

frequency band 
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harmonic ripple current of the inverter-side current that is 
calculated by (10). The relationship between the grid-side 
and the inverter-side ripple current is shown in Eq. (11). 
Using (11), Lg can be designed as shown in Eq. (12). Using 
these results, it is possible to design the LCL filter for the 
3-level T-type inverter.  

 
 

4. Simulation and Experimental Results 
 
In order to verify the design and control method, 

simulation and experiment of the PCS with the 3-level T-
type inverter are performed. The specifications and results 
of the design are shown in Table 2 and 3 respectively. The 
LCL filter in Table 3 is designed to satisfy the standards for 
harmonic currents (IEEE-519 standard).  

 
4.1. Simulation results 

 
Simulation results are shown in Fig. 6 applied the 

control method in Table 1. Fig. 6 (a) shows the results of 
the discharging mode. In this mode, the grid currents and 
the DC-link voltage are controlled by the 3-level T-type 
inverter and the bidirectional buck-boost converter 
respectively. The simulation results of the charging mode 
are shown in Fig. 6 (b). In this scenario, the 3-level T-
type inverter controls both the grid-current and the DC-link 
voltage and the bidirectional buck-boost converter controls 
the input current and voltage of the battery. As can be 
seen, the PCS operates properly both in the charging and 
discharging modes. These results show that the present 
control method can be applied in the PCS for ESS with 
the 3-level T-type inverter. In order to verify the design 
process of the LCL filter, the maximum values of the 
inverter-side and grid-side currents are also analyzed 
through the simulation as shown in Fig. 7. Fig. 7(a) and 

Table 2. Specification of the PCS 

Parameter Specification 
Rated power 5 kW 
Grid voltage 220 Vrms.LL 

Grid frequency 60 Hz 
DC-link voltage 400 Vdc 

Switching frequency 30 kHz 
 

Table 3. Design result of the LCL filter 

Parameter Specification 
Inverter-side inductor 0.60 mH 

Grid-side inductor 0.46 mH 
Filter capacitor 1.50 uF 
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(a) Simulation waveforms in discharging mode 
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(b) Simulation waveforms in charging mode 

Fig. 6. Simulation results of PCS with designed LCL filter 
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(b) Simulation waveforms of grid-side current ripple 

Fig. 7. Simulation results of LCL filter currents 
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(b) are the inverter-side and grid-side current ripple with 
the maximum value of 1.22 A and 0.052 A, respectively. 
On the other hand, values of calculation results using the 
analysis results are 1.23 A and 0.051 A, respectively. 
There are errors associated with both the simulation and 
experimental results because the resonance between the 
inductors and the capacitor in the designed LCL filter is 
not considered. In addition, the design process of the 
LCL filter in this paper is carried out under the condition 
that the inverter-side and grid-side both have the maximum 

values of ripple currents. However, the error is negligible 
because it is very small as compared to fundamental 
currents. Therefore, the present design process is reliable 
and simulation results show that it can be applied to design 
the LCL filter for the 3-level inverter. 

 
4.2 Experimental results 

 
A 5-kW PCS prototype for the ESS is designed by the 

proposed design process and controlled by the present 
control scheme. The prototype and experimental environ-
ment are shown in Fig. 8. Experimental conditions are the 
same as in the previous section.  

Fig. 9 and 10 is the experimental results of the 3-level 
T-type inverter in the light load (1 kW) and the full load 
(5 kW) and Fig. 11 shows the results of the total PCS for 
ESS applying the bidirectional buck-boost converter in 
charging and discharging mode at 5 kW. As can be seen, 
the PCS using the present control method operates 
properly under both the charging and discharging modes 
in the designed load region. In addition, average values 
of THD of output currents are 2.8% and 2.9% in the 
charging and discharging mode respectively that satisfy 
the standard of harmonic currents (IEEE-519 standard). 
The experimental results show that the control methods 
and the process of the LCL filter presented in this paper 
are reasonable to be applied in the PCS with 3-level T-
type inverters for ESS. 

Power analyzer

DC electric load

DC source

3Φ AC grid3-LV T-type 
inverter

Bi-directional 
DC-DC converter

Digital controller

 
Fig. 8. 5kW prototype of the PCS with 3-level T-type 

inverter and experimental environment 

 
VDC-link (200V/div.), IG.a (20A/div.), 
VUV(INV) (350V/div.), Vab(Grid) (350V/div.)

10ms/div.
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(b) Experimental waveforms in discharging mode (5 kW) 

Fig. 9. Experimental results of the 3-level T-type inverter 
in discharging mode 

VDC-link (200V/div.), IG.a (20A/div.), 
VUV(INV) (350V/div.), VUV(Grid) (350V/div.)

10ms/div.
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(b) Experimental waveforms in charging mode (5 kW) 

Fig. 10. Experimental results of the 3-level T-type inverter 
in charging mode 
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10ms/div.
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(a) Experimental waveforms in discharging mode (5kW) 
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(b) Experimental waveforms in charging mode (5kW) 

Fig. 11. Experimental results of the PCS 
 
 

5. Conclusion 
 
In this paper, the control method of the PCS with 3-level 

T-type inverters for ESS and the design process of the LCL 
filter are presented without involving complex mathematics. 
Furthermore, the validity of the control method and the 
design process of the PCS for the ESS are verified through 
simulation and experimental results. Therefore, the present 
control method and the design process can be applied to 
the actual design of the PCS with the 3-level T-type 
inverter for ESS. 
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