• Title/Summary/Keyword: inverter driven system

Search Result 170, Processing Time 0.028 seconds

Investigation of the IPMSM Parameter Variation Effect to the System Operation Characteristics of the Multi Inverter Driven High Speed Train System (다중 인버터 구동 고속전철 시스템의 IPMSM 파라미터 변동에 따른 운전 특성 고찰)

  • Park, Dong-Kyu;Jin, Kang-Hwan;Chang, Chin-Young;Kim, Sung-Je;Kim, Yoon-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.193-199
    • /
    • 2011
  • The next generation domestic high speed railway system is a power distributed type and uses vector control method for motor speed control. Nowadays, inverter driven induction motor system is widely used. However, recently PMSM drives are deeply considered as a alternative candidate instead of an induction motor driven system due to their advantages in efficiency, noise reduction and maintenance. The next-generation high-speed train is composed of 2 converter units, 4 inverter units, and 4 Traction Motor units. Each motor is connected to the inverter directly. In this paper, the effects of IPMSM parameter variation to the system operation characteristics of the multi inverter driven high speed train system are investigated. The parallel connected inverter input-output characteristics are analyzed to the parameter mismatches of the IPMSM in 1C1M control using Matlab/Simulink, then the reliability of the simulation results are verified through experimental results.

Rotor Fault Detection System for Inverter Driven Induction Motors using Currents Signals and an Encoder

  • Kim, Nam-Hun
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.271-277
    • /
    • 2007
  • In this paper, an induction motor rotor fault diagnosis system using current signals, which are measured using the axis-transformation method is presented. Inverter-fed motor drives, unlike line-driven motor drives, have stator currents which are rich in harmonics and therefore fault diagnosis using stator current is not trivial. The current signals for rotor fault diagnosis need precise and high resolution information, which means the diagnosis system demands additional hardware such as a low pass filter, high resolution ADC, an encoder and additional hardware. Therefore, the proposed axis-transformation method is expected to contribute to a low cost fault diagnosis system in inverter-fed motor drives without the need for any additional hardware. In order to confirm the validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation, using the Park transformation, is compared with the results obtained from the FFT(Fast Fourier Transform).

Low Cost Rotor Fault Detection System for Inverter Driven Induction Motor

  • Kim, Nam-Hun;Choi, Chang-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.500-504
    • /
    • 2007
  • In this paper, the induction motor rotor fault diagnosis system using current signals, which are measured using axis-transformation method, and speed, which is estimated using current information, are presented. In inverter-fed motor drives unlike line-driven motor drives the stator currents have numerous harmonics components and therefore fault diagnosis using stator currents is very difficult. The current and speed signal for rotor fault diagnosis needs to be precise. Also, high resolution information, which means the diagnosis system, demands additional hardware such as low pass filter, high resolution ADC, encoder and etc. Therefore, the proposed axis-transformation and speed estimation method are expected to contribute to low cost fault diagnosis systems in inverter-fed motor drives without the need for an encoder and any additional hardware. In order to confirm validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation using Park transformation and speed estimation method are compared with the results obtained from fast Fourier transforms.

High Precison Bearing Fault Detect System of Inverter Driven System Using Oversampled Current Signals (오버샘플된 전류신호를 사용한 인버터 구동형 전동기의 베어링 고장검출 시스템)

  • Kim, Nam-Hun;Kim, Min-Heui;Choi, Chang-Ho;Lee, Sang-Hoon;Choi, Keyng-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.506-508
    • /
    • 2007
  • In this paper, the induction motor bearing fault diagnosis system using current signals which are measured by over-sampling method is presented. In the case of inverter fed motor drive unlike line-driven motor drive, that make a lot of noise which can cause a wrong fault signals because of PWM(pulse width modulation) voltage. So, the current signals for fault diagnosis need very precise and high resolution information, which means this system demand additional hardware such as low pass filter, high resolution ADC system and so on to use fault diagnosis system. Therefore, the proposed over-sampling method is expected to contribute to low cost fault diagnosis system even though previous inverter fed motor drive without any additional hardware. In order to confirm the presented algorithms, various experiments for bearing faults are tested and the line current spectrum of each faulty situation using park transformation is compared with a FFT results.

  • PDF

Experimental Study on the Performance Characteristics of an Injection Type Scroll Compressor (인젝션용 스크롤 압축기의 성능특성에 관한 실험적 연구)

  • Cho, Hong-Hyun;Kim, Yong-Chan
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.193-198
    • /
    • 2000
  • For an inverter-driven compressor, the discharge temperature increased with a rise of frequency, Therefore, it is necessary to control the discharge temperature at high frequencies in order to obtain system reliability and efficiency. This paper describes the effects of liquid injection system on the performance of an inverter-driven scroll compressor. Experiments were performed at ASHRAE-T conditions. Frequency was altered from 45 to 105Hz. As results of the present work, the refrigerant discharge temperature fur the injection system was dropped approximately $10{\sim}20^{\circ}C$ as compared to those for the non-injection system. The COP of the compressor was improved approximately $0.8{\sim}9.3%$ at high frequencies(75, 90, and 105 Hz).

  • PDF

A Study on the Speed Control System of a 3 phase Induction Motor driven by the Full Bridge Inverter with a Low Pass LC Filter (저역통과 LC필터를 가진 전브리지형 인버터로 구동되는 3상유동전동기의 속도제어 시스템에 관한 연구)

  • 박진길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.538-550
    • /
    • 1998
  • The variable frequency and variable voltage AC source made by a conventional inverter which is composed of power semi-conductors includes much noises in sine wave due to high frequency switching of DC source. In this paper the 3rd low pass LC filter for a variable speed 3 phase induction motor driven by a full bridge inverter is introduced to solve the EMI problem by serious noise current. The utility of a modified 3rd order Butterworth LC filter is confirmed through FFT analysis of sine waves and noiseless ACsource can be obtained by the proposed LC filter. The speed of a 3 phase induction motor driven by a full bridge inverter with a LC filter is satisfactorily controlled by a digital PID controller under the condition of stepwise load and setpoint changes.

  • PDF

Rotor Fault Detection System for the Inverter Driven Induction Motor using Current Signals

  • Kim, Nam-Hun;Baik, Won-Sik;Kim, Min-Huei;Choi, Chang-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.224-231
    • /
    • 2009
  • The induction motor rotor fault diagnosis system using current signals, which are measured using an axis-transformation method, is presented in this paper. In inverter-fed motor drives, unlike line-driven motor drives, the stator currents are rich in harmonics; therefore fault diagnosis using stator current is not trivial. The current signals for rotor fault diagnosis need precise and high resolution information, which means the diagnosis system demands additional hardware such as a low pass filter, high resolution ADC, and encoder, etc. The proposed axis-transformation method with encoder and without encoder is expected to contribute to a low cost fault diagnosis system in inverter-fed motor drives without the need for any additional hardware. In order to confirm the validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation using Park transformation is compared with the results obtained from fast Fourier transforms.

Superheat Control of an Inverter-driven Heat Pump Using PI Control Algorithm

  • Park, Jong-Min;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.2
    • /
    • pp.106-115
    • /
    • 2002
  • The performance of an inverter-driven water-to-water heat pump with an electronic expansion valve (EEV) was measured as a function of compressor frequency, load conditions, and EEV opening. Based on the test results, a controller using proportional integral (PI) feedback or PI feedforward algorithm was designed and tested to investigate capacity modulation and transient response control of the system. Although the relation between superheat and EEV opening of the heat pump showed nonlinear characteristics, a control gain obtained at the rated frequency was applicable to various operating conditions without causing large deviations. When the simple PI feedback control algorithm was applied, a large overshoot of superheat and wet compression were observed due to time delay effects of compressor frequency. However, applying PI feedforward control scheme yielded better system performance and higher reliability, compared to the PI feedback algorithm.

Stability Enhancement of Four-in-Wheel Motor-Driven Electric Vehicles Using an Electric Differential System

  • Hartani, Kada;Merah, Abdelkader;Draou, Azeddine
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1244-1255
    • /
    • 2015
  • This paper presents a new multi-machine robust control based on an electric differential system for electric vehicle (EV) applications which is composed of four in-wheel permanent magnet synchronous motors. It is based on a new master-slave direct torque control (DTC) algorithm, which is used for the control of bi-machine traction systems based on a speed model reference adaptive system observer. The use of an electric differential in the design of a new EV constitutes a technological breakthrough. A classical system with a multi-inverter and a multi-machine comprises a three-phase inverter for each machine to be controlled. Another approach consists of only one three-phase inverter for several permanent magnet synchronous machines. The control of multi-machine single-inverter systems is the subject of this study. Several methods have been proposed for the control of multi-machine single-inverter systems. In this study, a new master-slave based DTC strategy is developed to generate an electric differential system. The entire system is simulated by Matlab/Simulink. The simulation results show the effectiveness of the new multi-machine robust control based on an electric differential system for use in EV applications.

Inverter Driven Air-Conditioner With Power Factor Correction Circuit (역률제어회로를 갖는 인버터 구동 에어컨)

  • 권경안;박병욱;김정태;정용채
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.105-110
    • /
    • 1999
  • This paper describes the inverter driven air-condetioner with power factor correction (PFC) circuit. By adopting PFC in the rectifier, we can reduce harmonic injection into power line, improve the efficiency and lower the total system cost compared to conventional inverter only. Also, system performance is improved by stabilizing the output voltage of PFC. In this paper, detailed design procedures for PFC are given, and the several merits with PFC are verified through the simulation and experiment.