Browse > Article
http://dx.doi.org/10.5370/JEET.2007.2.4.500

Low Cost Rotor Fault Detection System for Inverter Driven Induction Motor  

Kim, Nam-Hun (School of Electronic and Information Engineering, Cheongju University)
Choi, Chang-Ho (POSCON R&D Center)
Publication Information
Journal of Electrical Engineering and Technology / v.2, no.4, 2007 , pp. 500-504 More about this Journal
Abstract
In this paper, the induction motor rotor fault diagnosis system using current signals, which are measured using axis-transformation method, and speed, which is estimated using current information, are presented. In inverter-fed motor drives unlike line-driven motor drives the stator currents have numerous harmonics components and therefore fault diagnosis using stator currents is very difficult. The current and speed signal for rotor fault diagnosis needs to be precise. Also, high resolution information, which means the diagnosis system, demands additional hardware such as low pass filter, high resolution ADC, encoder and etc. Therefore, the proposed axis-transformation and speed estimation method are expected to contribute to low cost fault diagnosis systems in inverter-fed motor drives without the need for an encoder and any additional hardware. In order to confirm validity of the developed algorithms, various experiments for rotor faults are tested and the line current spectrum of each faulty situation using Park transformation and speed estimation method are compared with the results obtained from fast Fourier transforms.
Keywords
Currents signal; Fault diagnosis; Induction motor; Inverter driven system; Rotor fault;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M.E.H. Benbouzid, 'A review of induction motors signature analysis as a medium for faults detection,' IEEE Trans. Ind. Electron., vol. 47, no. 5, pp. 984-993, Oct. 2000   DOI   ScienceOn
2 R. Schoen, T. Habetler, F. Kamran, and R. Bartfield, 'Motor bearing damage detection using stator current monitoring,' IEEE Trans. Ind. Appl., vol. 31, no. 6, pp. 1274-1279, Nov./Dec. 1995   DOI   ScienceOn
3 H.A. Toliyat, M.S. Arefeen, and A.G. Parlos, 'A Method for Dynamic Simulation and Detection of Air-Gap Eccentricity in Induction Machines', IEEE Trans. on Industry Applications, vol. 32, No. 4, pp. 910-918, Jul./Aug. 1996   DOI   ScienceOn
4 McDermid, W., 'Insulation systems and monitoring for stator winding of large rotating machines,' IEEE Electrical Insulation Magazine, vol. 9, no. 4, pp. 7-15, 1993
5 F. Filippetti, G. Franceschini, C. Tassoni, and P. Vas, 'Recent developments of induction motor drives fault diagnosis using AI techniques,' IEEE Trans. Ind. Electron., vol. 47, no. 5, pp. 994-1004, Oct. 2000   DOI   ScienceOn
6 M. A. Awadallah and M. M. Morcos, 'Application of AI tools in fault diagnosis of electrical machines and drives-an overview,' IEEE Trans. Energy Convers., vol. 18, no. 2, pp. 245-251, Jun. 2003   DOI   ScienceOn
7 J.-S. R. Jang, 'ANFIS: adaptive-network-based fuzzy inference system,' IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685, May/Jun. 1993   DOI   ScienceOn
8 Schemp, D.E., 'Predict motor failure with insulation testing,' Plant Engineering, vol. 50, pp. 97-96, 1996
9 Stone, G.C., 'Partial discharge measurements to access rotation machine insulation condition: A survey,' Conference Record of the IEEE International Symposium on Electrical Insulation, pp. 19-23, 1996
10 J.R. Cameron, W. T. Thomson and A.B. Dow, 'Vibration and Current monitoring for detecting airgap eccentricity in large induction motors', Proceeding of IEE, vol. 133, Pt. B, No. 3, pp. 155-163, May 1986
11 J. S. hsu, 'Monitoring of defects in induction motors through air-gap torque observation,' IEEE Transaction on Industrial Applications, Vol. 31, No. 5, pp. 1016-1021, Sept./Oct. 1995   DOI   ScienceOn
12 J.F. Watson, N.C. Paterson, and D.G. Dorrell, 'The Use of Finite Element Methods to Improve Techniques for the Early Detection of Faults in 3- phase Induction Motors', IEEE Trans. on Energy Conversion, vol. 14, No. 3, pp. 655 660, Sep. 1999
13 G.B. Kliman, R.A. Koegl, J. Stein, R.D. Endicott, and M.W. Madden, 'Noninvasive detection of broken rotor bars in operating induction motors,' IEEE Trans. Energy Conv., vol. 3, pp. 873-879, Dec. 1988   DOI   ScienceOn
14 S. Nandi, M. Bharadwaj, and H.A. Toliyat, 'Performance Analysis of a Three-Phase Induction Motor Under Mixed Eccentricity Condition,' IEEE Trans. Energy Conv., vol. 17, pp. 392-399, Sep. 2002   DOI   ScienceOn