• Title/Summary/Keyword: inversion problem

Search Result 232, Processing Time 0.024 seconds

Inversion of Resistivity Tomography Data Using EACB Approach (EACB법에 의한 전기비저항 토모그래피 자료의 역산)

  • Cho In-Ky;Kim Ki-Ju
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.2
    • /
    • pp.129-136
    • /
    • 2005
  • The damped least-squares inversion has become a most popular method in finding the solution in geophysical problems. Generally, the least-squares inversion is to minimize the object function which consists of data misfits and model constraints. Although both the data misfit and the model constraint take an important part in the least-squares inversion, most of the studies are concentrated on what kind of model constraint is imposed and how to select an optimum regularization parameter. Despite that each datum is recommended to be weighted according to its uncertainty or error in the data acquisition, the uncertainty is usually not available. Thus, the data weighting matrix is inevitably regarded as the identity matrix in the inversion. We present a new inversion scheme, in which the data weighting matrix is automatically obtained from the analysis of the data resolution matrix and its spread function. This approach, named 'extended active constraint balancing (EACB)', assigns a great weighting on the datum having a high resolution and vice versa. We demonstrate that by applying EACB to a two-dimensional resistivity tomography problem, the EACB approach helps to enhance both the resolution and the stability of the inversion process.

Acoustic Full-waveform Inversion using Adam Optimizer (Adam Optimizer를 이용한 음향매질 탄성파 완전파형역산)

  • Kim, Sooyoon;Chung, Wookeen;Shin, Sungryul
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.202-209
    • /
    • 2019
  • In this study, an acoustic full-waveform inversion using Adam optimizer was proposed. The steepest descent method, which is commonly used for the optimization of seismic waveform inversion, is fast and easy to apply, but the inverse problem does not converge correctly. Various optimization methods suggested as alternative solutions require large calculation time though they were much more accurate than the steepest descent method. The Adam optimizer is widely used in deep learning for the optimization of learning model. It is considered as one of the most effective optimization method for diverse models. Thus, we proposed seismic full-waveform inversion algorithm using the Adam optimizer for fast and accurate convergence. To prove the performance of the suggested inversion algorithm, we compared the updated P-wave velocity model obtained using the Adam optimizer with the inversion results from the steepest descent method. As a result, we confirmed that the proposed algorithm can provide fast error convergence and precise inversion results.

Development of a Moldboard Plow to Invert Furrow Slice at the Same Position (토양의 제자리 반전을 위한 몰드보드 플라우의 개발)

  • 이규승;박원엽;권병기
    • Journal of Biosystems Engineering
    • /
    • v.29 no.1
    • /
    • pp.9-20
    • /
    • 2004
  • On the basis of design theory of soil inversion, two types of moldboard plow with secondary soil mover was designed and constructed to invert furrow slice at same position with furrow bottom. A series of soil bin experiment was carried to investigate the performance of prototypes. First prototype of new concept plow showed two kinds of problems during the preliminary experiment. For the plowing depth of 6cut the prototype did not invert the furrow slice, instead it just cut furrow bottom and the furrow slice returned to the original position. For the plowing depth of 8cm, there was soil clogging problem at the rear part of plow. From the above results it was concluded that the first prototype can not be used for the inversion of furrow slice at same position with furrow bottom. Second prototype could invert furrow slice at the same position with furrow bottom, but the performance was affected by soil moisture content soil hardness and plowing speed very much. For the higher soil moisture content, for the higher soil hardness and higher plowing speed, the prototype showed higher soil inversion performance. For the second prototype the inversion ratio was almost 100%, inversion angle was in the range of 90 to 100 degree and side displacement was less than 4 cm. But the furrow slice was not continuous, it was cut in the length of 30 to 40 cm. The reason why the furrow slice was cut in that length is blamed for the design of moldboard surface. The specific draft of prototype was in the range of 37.24 kN/㎡ to 42.14 kN/㎡ this value is a little higher than that of the conventional plow, or from 30.38 kN/㎡ to 33.32 kN/㎡. But the difference was not so big. The inversion performance of the second prototype for the field experiment was much better than that of soil bin experiment due to the better soil and operational conditions. Sticky and compacted soil conditions, and higher plowing speed was suitable for the plowing operation of the second prototype

Electromagnetic Tomography Using Finite Element Method (유한요소법을 이용한 전자탐사 토모그래피 연구)

  • Son, Jeong-Sul;Song, Yoon-Ho;Kim, Jung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.185-190
    • /
    • 2007
  • In this study, we developed the 2.5D EM modeling and inversion algorithm for cross-hole source and receiver geometry. Considering the cross-hole environment, we use a VMD (vertical magnetic dipole) as a source and vertical magnetic fields as a measuring data. Developed inversion algorithm is tested for the isolated block model which has a conductive and a resistivity anomaly respectively. For the conductive anomaly, its size and resistivity are inverted well on the inversion results, while for the resistive anomaly, the location of anomalous block is shown on the inverted section, but its values are far from the exact value. Furthermore, artificial conductive anomalies are shown around the resistive anomalous zone. If we consider the inversion artifact shown in the test inversion of restive block, it is almost impossible to image the resistive zone. However, the main target of EM tomography in the engineering problem is conductive target such as fault zone, and contaminated zone etc., EM tomography algorithm can be used for detecting the anomalous zone.

  • PDF

Measurement using Low-temperature Scanning Hall Probe Microscopy and Analysis of Local Current Distribution using Inversion Problem Technique (저온 주사 홀소자 현미경과 역변환 방법을 이용한 국소적 전류 분포 분석)

  • Cho, B.R.;Park, S.K.;Park, H.Y.;Ri, H.C.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.34-39
    • /
    • 2011
  • We have performed measurements of the local magnetic field distribution of YBCO coated conductors using Low-temperature Scanning Hall Probe Microscopy (LT-SHPM). Distribution of stray magnetic field of various types of YBCO coated conductors in the superconducting state was measured in presence of external magnetic fields. We analyzed one dimensional and two dimensional local current distribution using inversion technique from the magnetic field distribution.

The Forward Kinematics Solution for Casing Oscillator Using the Kinematic Inversion (기구학적 전이를 이용한 케이싱 오실레이터의 순기구학 해석)

  • 배형섭;백재호;박명관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.130-139
    • /
    • 2004
  • The Casing Oscillator is a bore file Equipment for the all-casing process. All-casing process is a method of foundation work in construction yard to oscillate steel Casing in the ground. The existing Casing Oscillator has some problem like not boring horizontally with disturbance and not driving Casing othor angle except horizon. To solve problem, the new structure Casing Oscillator is presented and studied. The performance of Casing Oscillator is improved by kinematics analysis. The Casing Oscillator is similar to the parallel manipulator in structure. So we obtain Inverse kinematics solution of Casing Oscillator easily. But it is difficult to solve forward kinematics of Casing Oscillator. T his paper presents a novel pose description corresponding to the structure characteristics of parallel manipulators. Through analysis on geometry theory, we obtain a new method of the closed-form solution to the forward kinematics using Kinematic Inversion. The closed-form solution contains two different meanings -analytical and real-time. So we reach the goal of practical application and control. Closed-form forward kinematics solution is verified by an inverse kinematics analysis. It shows that the method has a practical value for real -time control and inverse kinematics servo control.

Enhanced Algorithms for Reliability Calculation of Complex System

  • Lee, Seong Cheol
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.121-135
    • /
    • 1999
  • This paper studies the problem of inverting minimal path sets to obtain minimal cut sets for complex system. We describe efficiency of inversion algorithm by the use of boolean algebra and we develop inclusion-exclusion algorithm and pivotal decomposition algorithm for reliability calculation of complex system. Several examples are illustrated and the computation speeds between the two algorithms are undertaken.

  • PDF

THE ENUMERATION OF ROOTED CUBIC C-NETS

  • CAI JUNLIANG;HAO RONGXIA;LID YANPEI
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.329-337
    • /
    • 2005
  • This paper is to establish a functional equation satisfied by the generating function for counting rooted cubic c-nets and then to determine the parametric expressions of the equation directly. Meanwhile, the explicit formulae for counting rooted cubic c-nets are derived immediately by employing Lagrangian inversion with one or two parameters. Both of them are summation-free and in which one is just an answer to the open problem (8.6.5) in [1].

Introduction to Subsurface Inversion Using Reversible Jump Markov-chain Monte Carlo (가역 도약 마르코프 연쇄 몬테 카를로 방법을 이용한 물성 역산 기술 소개)

  • Hyunggu, Jun;Yongchae, Cho
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.252-265
    • /
    • 2022
  • Subsurface velocity is critical for the accurate resolution geological structures. The estimation of acoustic impedance is also critical, as it provides key information regarding the reservoir properties. Therefore, researchers have developed various inversion approaches for the estimation of reservoir properties. The Markov chain Monte Carlo method, which is a stochastic method, has advantages over the deterministic method, as the stochastic method enables us to attenuate the local minima problem and quantify the uncertainty of inversion results. Therefore, the Markov chain Monte Carlo inversion method has been applied to various kinds of geophysical inversion problems. However, studies on the Markov chain Monte Carlo inversion are still very few compared with deterministic approaches. In this study, we reviewed various types of reversible jump Markov chain Monte Carlo applications and explained the key concept of each application. Furthermore, we discussed future applications of the stochastic method.

3D Modeling and Inversion of Magnetic Anomalies (자력이상 3차원 모델링 및 역산)

  • Cho, In-Ky;Kang, Hye-Jin;Lee, Keun-Soo;Ko, Kwang-Beom;Kim, Jong-Nam;You, Young-June;Han, Kyeong-Soo;Shin, Hong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.119-130
    • /
    • 2013
  • We developed a method for inverting magnetic data to recover the 3D susceptibility models. The major difficulty in the inversion of the potential data is the non-uniqueness and the vast computing time. The insufficient number of data compared with that of inversion blocks intensifies the non-uniqueness problem. Furthermore, there is poor depth resolution inherent in magnetic data. To overcome this non-uniqueness problem, we propose a resolution model constraint that imposes large penalty on the model parameter with good resolution; on the other hand, small penalty on the model parameter with poor resolution. Using this model constraint, the model parameter with a poor resolution can be effectively resolved. Moreover, the wavelet transform and parallel solving were introduced to save the computing time. Through the wavelet transform, a large system matrix was transformed to a sparse matrix and solved by a parallel linear equation solver. This procedure is able to enormously save the computing time for the 3D inversion of magnetic data. The developed inversion algorithm is applied to the inversion of the synthetic data for typical models of magnetic anomalies and real airborne data obtained at the Geumsan area of Korea.