Browse > Article
http://dx.doi.org/10.7582/GGE.2022.25.4.252

Introduction to Subsurface Inversion Using Reversible Jump Markov-chain Monte Carlo  

Hyunggu, Jun (Department of Geology, Kyungpook National University)
Yongchae, Cho (Department of Energy Resources Engineering, Seoul National University)
Publication Information
Geophysics and Geophysical Exploration / v.25, no.4, 2022 , pp. 252-265 More about this Journal
Abstract
Subsurface velocity is critical for the accurate resolution geological structures. The estimation of acoustic impedance is also critical, as it provides key information regarding the reservoir properties. Therefore, researchers have developed various inversion approaches for the estimation of reservoir properties. The Markov chain Monte Carlo method, which is a stochastic method, has advantages over the deterministic method, as the stochastic method enables us to attenuate the local minima problem and quantify the uncertainty of inversion results. Therefore, the Markov chain Monte Carlo inversion method has been applied to various kinds of geophysical inversion problems. However, studies on the Markov chain Monte Carlo inversion are still very few compared with deterministic approaches. In this study, we reviewed various types of reversible jump Markov chain Monte Carlo applications and explained the key concept of each application. Furthermore, we discussed future applications of the stochastic method.
Keywords
P-wave velocity; impedance; inversion; Markov-chain; Monte Carlo;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pratt, R. G., Shin, C., and Hick, G. J., 1998, Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion, Geophysical Journal International, 133(2), 341-362. https://doi.org/10.1046/j.1365-246X.1998.00498.x   DOI
2 Araya-Polo, M., Ferris, S., and Florez, M., 2019, Deep learning driven velocity model building workflow, The Leading Edge, 38(11), 872a1-872a9. https://doi.org/10.1190/tle38110872a1.1   DOI
3 Bodin, T., and Sambridge, M., 2009, Seismic tomography with the reversible jump algorithm, Geophysical Journal International, 178(3), 1411-1436. https://doi.org/10.1111/j.1365-246X.2009.04226.x   DOI
4 Cho, Y., Gibson Jr, R. L., and Zhu, D., 2018, Quasi 3D transdimensional Markov-chain Monte Carlo for seismic impedance inversion and uncertainty analysis, Interpretation, 6(3), T613-T624. https://doi.org/10.1190/INT-2017-0136.1   DOI
5 Cho, Y., Jeong, D., and Jun, H., 2020, Semi-auto horizon tracking guided by strata histograms generated with transdimensional Markov-chain Monte Carlo, Geophysical Prospecting, 68(5), 1456-1475. https://doi.org/10.1111/1365-2478.12933   DOI
6 Cho, Y., and Jun, H., 2021, Estimation and uncertainty analysis of the CO2 storage volume in the Sleipner field via 4D reversible-jump Markov-chain Monte Carlo, Journal of Petroleum Science and Engineering, 200, 108333. https://doi.org/10.1016/j.petrol.2020.108333   DOI
7 Everett, M. E., 2013, Near-surface applied geophysics. Cambridge University Press. https://doi.org/10.1017/CBO9781139088435   DOI
8 Geyer, C. J., and Moller, J., 1994, Simulation procedures and likelihood inference for spatial point processes, Scandinavian Journal of Statistics, 21, 359-373. https://www.jstor.org/stable/4616323
9 Green, P. J., 1995, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82, 711-732. https://doi.org/10.1093/biomet/82.4.711   DOI
10 Gutierrez, M., Katsuki, D., and Almrabat, A., 2012, Effects of CO2 injection on the seismic velocity of sandstone saturated with saline water, Int. J. Geosci., 3(5), 908-917. http://dx.doi.org/10.4236/ijg.2012.325093   DOI
11 Hastings, W. K., 1970, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57(1), 97-109. https://doi.org/10.2307/2334940   DOI
12 Hong, T., and Sen, M. K., 2009, A new MCMC algorithm for seismic waveform inversion and corresponding uncertainty analysis, Geophysical Journal International, 177, 14-32. https://doi.org/10.1111/j.1365-246X.2008.04052.x   DOI
13 Jun, H., Cho, Y., and Noh, J., 2019, Trans-dimensional Markov chain Monte Carlo inversion of sound speed and temperature: Application to Yellow Sea multichannel seismic data, Journal of Marine Systems, 197, 103180. http://dx.doi.org/10.1016/j.jmarsys.2019.05.006   DOI
14 Liu, B., Yang, S., Ren, Y., Xu, X., Jiang, P., and Chen, Y., 2021, Deep-learning seismic full-waveform inversion for realistic structural models, Geophysics, 86(1), R31-R44. https://doi.org/10.1190/geo2019-0435.1   DOI
15 Liu, Z., and Bleistein, N., 1995, Migration velocity analysis: Theory and an iterative algorithm, Geophysics, 60(1), 142-153. https://doi.org/10.1190/1.1443741   DOI
16 Luo, X., 2010, Constraining the shape of a gravity anomalous body using reversible jump Markov chain Monte Carlo, Geophysical Journal International, 180(3), 1067-1079. https://doi.org/10.1111/j.1365-246X.2009.04479.x   DOI
17 Medwin, H., 1975, Speed of sound in water: a simple equation for realistic parameters, J. Acoust. Soc. Am., 58, 1318-1319. https://doi.org/10.1121/1.380790   DOI
18 Ma, X. Q., 2002, Simultaneous inversion of prestack seismic data for rock properties using simulated annealing, Geophysics, 67(6), 1877-1885. https://doi.org/10.1190/1.1527087   DOI
19 Mallick, S., 1995, Model-based inversion of amplitude-variations with offset data using a genetic algorithm, Geophysics, 60(4), 939-954. https://doi.org/10.1190/1.1443860   DOI
20 Malinverno, A., 2002, Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem, Geophysical Journal International, 151(3), 675-688. https://doi.org/10.1046/j.1365-246X.2002.01847.x   DOI
21 Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E., 1953, Equation of state calculations by fast computing machines, The Journal of Chemical Physics, 21(6), 1087-1092. https://doi.org/10.1063/1.1699114   DOI
22 Misra, S., and Sacchi, M. D., 2008, Global optimization with model-space preconditioning: Application to AVO inversion, Geophysics, 73(5), R71-R82. https://doi.org/10.1190/1.2958008   DOI
23 Ray, A., Kaplan, S., Washbourne, J., and Albertin, U., 2018, Low frequency full waveform seismic inversion within a tree based Bayesian framework, Geophysical Journal International, 212(1), 522-542. https://doi.org/10.1093/gji/ggx428   DOI
24 Salamanca, A., Gutierrez, E., and Montes, L., 2017, Optimization of a seismic inversion genetic algorithm, 87th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 823-827. https://doi.org/10.1190/segam2017-17795633.1
25 Sen, M., and Biswas, R., 2017, Transdimensional seismic inversion using the reversible jump Hamiltonian Monte Carlo algorithm, Geophysics, 82(3), R119-R134. https://doi.org/10.1190/geo2016-0010.1   DOI
26 Sambridge, M., Gallagher, K., Jackson, A., and Rickwood, P., 2006, Trans-dimensional inverse problems, model comparison and the evidence, Geophysical Journal International, 167(2), 528-542. https://doi.org/10.1111/j.1365-246X.2006.03155.x   DOI
27 Schuster, G. T., and Quintus-Bosz, A., 1993, Wavepath eikonal traveltime inversion: Theory, Geophysics, 58, 1314-1323. https://doi.org/10.1190/1.1443514   DOI
28 Sen, M., and Stoffa, P., 1991, Nonlinear one-dimensional seismic waveform inversion using simulated annealing, Geophysics, 56, 1624-1638. https://doi.org/10.1190/1.1442973   DOI
29 Sheng, J., Leeds, A., Buddensiek, M., and Schuster, G. T., 2006, Early arrival waveform tomography on near-surface refraction data, Geophysics, 71(4), U47-U57. https://doi.org/10.1190/1.2210969   DOI
30 Stuart, G. K., Yang, W., Minkoff, S., and Pereira, F., 2016, A two-stage Markov chain Monte Carlo method for velocity estimation and uncertainty quantification, 86th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 3682-3687. https://doi.org/10.1190/segam2016-13865449.1
31 Taillandier, C., Noble, M., Chauris, H., and Calandra, H., 2009, First-arrival traveltime tomography based on the adjoint-state method, Geophysics, 74(6), WCB1-WCB10. https://doi.org/10.1190/1.3250266   DOI
32 Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation, Geophysics, 49(8), 1259-1266. https://doi.org/10.1190/1.1441754   DOI
33 Wang, R., Zuo, T., and Wang, K., 2003, The yellow sea cold bottom water? An oversummering site for calanus sinicus (copepoda, crustacea), J. Plankton Res., 25, 169-183. https://doi.org/10.1093/plankt/25.2.169   DOI
34 Yilmaz, O., 2001, Seismic data analysis: processing, inversion and interpretation of seismic data Vol. I, Soc. Expl. Geophys., 288-323. https://library.seg.org/doi/pdf/10.1190/1.9781560801580.fm   DOI
35 Xue, Y., and Sen, M. K., 2016, Stochastic seismic inversion using greedy annealed importance sampling, Journal of Geophysics and Engineering, 13(5), 786-804. https://doi.org/10.1088/1742-2132/13/5/786   DOI
36 Yang, F., and Ma, J., 2019, Deep-learning inversion: A next generation seismic velocity model building method, Geophysics, 84(4), R583-R599. https://doi.org/10.1190/geo2018-0249.1   DOI
37 Yang, H. W., Cho, Y. K., Seo, G. H., You, S. H., and Seo, J. W., 2014, Interannual variation of the southern limit in the yellow sea bottom cold water and its causes, J. Mar. Syst., 139, 119-127. https://doi.org/10.1016/j.jmarsys.2014.05.007   DOI
38 Yun, Y. H., Park, Y. H., and Bong, J. H., 1991, Enlightenment of the characteristics of the yellow sea bottom cold water and its southward extension, J. Kor. Earth Sci. Soc., 12, 25. https://koreascience.kr/article/JAKO199110102456862.page   DOI
39 Zhang, S., Wang, Q., Lu, Y., Cui, H., and Yuan, Y., 2008, Observation of the seasonal evolution of the yellow sea cold water mass in 1996-1998, Cont. Shelf Res., 28, 442-457. https://doi.org/10.1016/j.csr.2007.10.002   DOI
40 Zhu, D., and Gibson, R., 2016, Seismic inversion and uncertainty analysis using a transdimensional Markov chain Monte Carlo method, 86th Ann. Internat. Mtg. Soc. Expl. Geophys., Expanded Abstracts, 3666-3671. https://doi.org/10.1190/segam2016-13870581.1
41 Zhu, D., and Gibson, R., 2018, Seismic inversion and uncertainty quantification using transdimensional Markov chain Monte Carlo method, Geophysics, 83(4), R321-R334. https://doi.org/10.1190/geo2016-0594.1   DOI