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Enhanced Algorithms for Reliability
Calculation of Complex System"

Seong Cheol Lee

Abstract

This paper studies the problem of inverting minimal path sets to obtain minimal cut
sets for complex system. We describe efficiency of inversion algorithm by the use of
boolean algebra and we develop inclusion-exclusion algorithm and pivotal
decomposition algorithm for reliability calculation of complex system. Several examples
are illustrated and the computation speeds between the two algorithms are undertaken.

1. Introduction

The reliability literature of the past 10 years contains many papers with
reliability calculation of coherent structure. This paper extends [10] and
discussed the some algorithms for reliability calculation. Problems related to
the coherent structure of the system are based on [6]. The path set and cut
set method for determining system reliability [1] is used. In section 2, we
faintly survey an inversion algorithm by Heidtmann to the case of inverting
paths and cuts of 2-state systems. The method in section 2 is based on
symbolic manipulation of boolean functions by applying two de Morgan’s
laws. To invert paths from cuts and vice versa the boolean structure function
must be derived, inverted, and reduced. Then the sets can be deduced. In
section 3 and 4, we propose an inclusion-exclusion algorithm and a pivotal
decomposition algorithm by the use of inclusion-exclusion formula and the
decomposition rule. These algorithms are easy to program and expedient for
automated computation.

Notation
N set of integers from 1 to n
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Key word : inversion algorithm, inclusion-exclusion algorithm, pivotal decomposition
algorithm
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I subset of N

o ¥ power set of N

MA}  number of element of A

A inverse of A

A’ star function of A

x; boolean variable of i-th component
X complement boolean variable of i-th component
S success expression of the system
R reliability expression of the system
(%) system structure function
h(p) system reliability function

2. Inversion Algorithm and Algebraic Technique

K. D. Heidtmann suggested an inversion algorithm in his paper [3]. Now
we will try to describe his algorithm in simpler terms. Each component of a
system of # component is uniquely represented by its index ¢ N, and any
assembly of components by a subset I of N. So any path or cut is a subset
of N, and set of all paths, or the set of all cuts, is a subset of the power set
2% The concept of inverse combines two complements to invert paths and
cuts as subsets A and A’ of 2% that is, if A is set of paths, then A’ is
set of cuts; and vice versa.

Let AC2" ICN. From the complement 1 of every I for I=A. Eliminate
from 2% all such 7 The result is A’, the inverse of A. More formally, let
AC2¥, A'c2¥ ICN. Then A’ is the inverse of A if and only if for every
possible I, either IeA or IeA’. The inverse property is reciprocal: ( A")' =
A. The number of elements of A, plus the number of elements in A’ is
2" n{AY+n{A'}=2". There exists one and only one inverse of A.

Let AC2¥ ICN. From the complement 7 of every for IeA. A" is the set
of all those I A and (A’)* are a partition of 2V, A'=(A%)=(A°*. These
inverse and star relationships were derived and proved in Lee(1996)(8].

In applying the inverse concept by hand calculation, many sets must be
looked at because 2V contains 2" elements. Thus it is helpful to verify the
correctness of a computed A’ by the following test which is based on the
facts that A and (A")* form a partition of 2% and #{2"}=2".
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Test : Let A’ be the inverse of A, AC2Y., Then A and A’ satisfy
A} +n{A'}=2"
For automated calculation, the inversion algorithm can be used. After
execution, A’ contains all cuts if A contains all paths, and vice versa.

Inversion Algorithm

Input : A, N

step 1. Compute A*. The I are the elements of 2%

step 2. Set [+ @ and A « Q.

step 3. If T& A" then A" — A U {1}

step 4. If I # N then replace I by its successor and go to 3.
step 5. Stop( A" is inverse of A ).

The test yields n{ A}+ n{ A’} = 3+ 5 = 2,

Example 1. The bridge structure is shown in the following diagram

Fig.l 5~component bridge system

There are five components; n=5, N={1, 2, 3, 4, 5}

2¥={o,{1}, - - -, (5L{1,2}, - - -,{4,5},{1,2,3}, - - -,{3,4,5},{1,2,3,4}, - - -,
{2,3,4,5},{1,2,3,4,5}}
n{2M =25,

This system has 16 paths which conclude 4 minimal path sets.

A={I,L, - - -, L}={{1,4},{2,5}, - - - ,{1,2,3,4,5}}.
L={1,4=1{2,3,5}, L={(2,5)={1,3,4}, - - -, Ix=1{1,2,3,4,5)= 0.
Thus A*={{2,3,5},(1,3,4}, - - -, 0}
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By remove the elements of A* from 2V,
A ={(1,2,3},{4,5},---,{1,2,3,4,5}}.
The test yields : n{A}+#{A'}=16+16=2°,

According to the above example, the inversion algorithm is useful in
finding inverting paths and cuts of 2-states systems, but it depends upon set
theory. Therefore, we need another algorithm in order to easily calculate
system reliability.

Now, we present an algebraic technique computing system reliability. The
system success expression S is given by the union of all the system minimal
path sets: that is

=P+ PP+ P, P,P3+...+ P P,... Py_{Pn, (1)

Each P; in (1) is a product term of the form

P,-=JI=Ix,-,~, z'=l,2,...,m (2)

When (2) is substituted in (1), and all P; are expanded using DeMorgan’s

Law, the product terms in the resulting sum of product expression lose their
disjointedness. By above two formulas, we reduce following algorithm which
gives a minimum reliability expression.

Boolean Algorithm

Step 1. Enumerate all the m paths of the system and arrange these in a
sequence

P,P,, ..., P,.
Step 2. Write S in a more convenient from given by (1)
S= P+ P\(Py+ Py(P3+ Py(...(Ppoy+ Ppy(P,)).. D). (3)

Step 3. Substitute expression of P, in (3); let j=m—1.
Step 4. In the resulting expression substitute expression of P; ; let j=;—1.
Step 5. Repeat step 4 if j=1.

Step 6. Replace logical variables by their reliabilities to get the required
reliability expression.

For illustration, consider the 5-component bridge system shown in Fig. 1
which is also solved in [8].
Step 1. Paths are P,={1,4}, P,={1,3,5}, P;={2,5}, P,=1{2,3,4}.
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Step 2. S=Pi+ Pi(Py+ Py(Py+ Py(Py)))
Step 3, 4, 5.
S= x4 + 21 204(x1 x3%5 + 212305 X9%5 + x9%5(x9%3%4)))

=x1x4+ x_lx_4x1x3x5 + X1 %421 X3X5%0%5 + X1 X4 X1 X3X5X9X5X9X 3Ky
= 20y 24+ X1 %3205+ X1 Ko X320 4%5 + XXX 3K 4K
Step 6. R=p1ps+ p163(1— pps+ (1 — 0161 — p3)(L — p4) s+ (1 — 1y pat3pa(1 — p5)
Any assignment of 0-1 values to the x;'s that makes the cut set
polynomial equal to 1 corres_ponds to system failure; ie, no path of good arcs
exists in the bridge system. Now we propose some algorithms for reliability
calculation of simple and complex system.

3. Inclusion-Exclusion Algorithm

The inclusion-exclusion rule came from the additive law of probability. So
the inclusion-exclusion method provides successive upper and lower bounds on
system reliability which converge to the exact system reliability. In system
reliability calculations by the inclusion-exclusion method, large numbers of
pairs of identical terms with opposite signs cancel. For any system with =#
minimal path sets the number of terms generated in step i of the method is

(?), so that the Poincaré formula consist of 2 (?) =2"—1 terms.

Two of the terms cancel if a union of i minimal path sets contains exactly
the same components as a union of ; minimal path sets (1<i, j<n, |i—j| =1
) Therefore the reliability analysis of all systems having pairwise disjoint
minimal path sets, i.e. which have redundant component, is affected by this
cancelling terms. For nearly all large complex systems the number of
cancelling terms is enormous, so that avoiding these terms affords an
important computational advantage.

Reliability analysis by the original method of inclusion-exclusion assumes
the knowledge of all minimal path or cut sets[1].

Let E,(E,) be the event that i~th component x; is functioning (failed)
with probability 2;(1—25,).
Let A,(A,) be the event that all components in r-th minimal path set P,

is functioning (failed).

1e.
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A, =NE; 1_4: EHE (4)
xiCP, ’ x,CK,

where K, is r-th minimal cut set. Then

P(A,)=P (NE)  P(A,)=P (NE) 5)
x;CP,’ x;, CK,

System success corresponds to event U,-; A, if the system has » minimal

path sets.
The the system reliability function

) =H U A, 6)

r=1

Se= 2P AiNABN---NAZ]

1<i iy iysin

Let

by the inclusion-exclusion principal{2]

W) = 2(-D*S, @
and
h(p) £S5,
h(p)= S-S, (8
h(p) <S1— S+ S;
and so on.

Now we define the approximation to system reliability function #(p) of step
m by

: h("’)(p)E ;(_1)12—15}: 9

For m > 1
h(’”)(p) — h(m—l)(p)+(_1)m_1sm (10)
h(")(p) — h(p) (11)

Although it is not true in general that the upper bounds decrease and the
lower bounds increase, in practice it may be necessary to calculate only a few
S.’s to obtain a close approximation. Of course similar formulas for computing

system unreliability #(#) in terms of minimal cut sets and component
unreliabilities 1 — p; can be given. Now we state the algorithm in detail.
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Inclusion- Exclusion Algorithm

Input : =, pi, by **, DPun Npor e

Output : #(p)

step 1. set 7 =1

step 2. while i< N; do step 3~5

step 3. set S; = 1Sr,<Z<r,Sn P, P, ( compute S; )

Wp) = 2(-D7LS,
step 4. if |S;—S,-] < €
output Z(p)
stop
step 5. set 7 = [+1
Si = Sit1
step 6. output (method failed after N, iterations, Ny or #(p) )

4. Pivotal decomposition algorithm

This section, gives the algorithm for pivotal decomposition rule. The
following identity holds for any structure function ¢ of order »:

¢(x) = xi’¢(1i,x) + (l—x,-)‘qﬁ(o,,x) (12)
We immediately obtain the corresponding pivotal decomposition of the
reliability function.

W(p) = E[$(X)]

=p, - W1l,p) + (A1=p)-b0;p) = 1,,n (13)
Now we proposed the following algbrithm.

Algorithm for series system

Input ° =, p1, po s Dy

Output : A(p)

stepl. i =1

step 2. while 7<% do step 3~4
step 3. set #(0;,p) = 0

W1,0) = pivy BM(lis, ) + (1=pis1) * W0;11, D)
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Wp) = p- w(1;0) + (1—p) - K0, p) (compute A(p))
step 4. { = ¢ + 1
step 5. output A(p)

Algorithm for paraliel system
Input : =, p1 P2 >, Pa
Output : #(p)
step 1. 7 =1
step 2. while i< % do step 3~4
step 3. set W(1,p) =1
WO, 0) = pisih(lir1,0) + (1=0;41)00;41, )
R(p) = pi- W1;0) + (1=2) - #0;,0) (compute 4(p))
stepd =17+ 1
step 5. output %(p)

5. Numerical Examples

Now we present several examples. We applied the inclusion-exclusion
method in actual practice which concerned airplane operation systems (Lee
1991, 1993)[5],[6]. Suppose that an airplane engine will operate, when in flight,
with probability », independently from engine to engine; Suppose that the

airplane will make a successful flight if at least 50% of its engines remain
operative.
Example 2. (1-out-of-2:G system) We consider 2-engine plane. From (Lee
1993-1)[6], it has two minimal path sets

Pi={1}, P,={2}

Thus the first bound on the reliability 2Y(p) is
KO = 5= 3 P(AD

=p1tb2
And the second bound is

RO =rD(p) — S,
= nV(p) — P(A () As)
= p1+ D2 — Di1be
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Hence by (11), system reliability

w(p) = hP(p)
The 1-out-of-2 : G system is also a 2-out of-2 : F system with only one
minimal cut set
K ={1,2}
Hence unreliability
h(p) = P(A))
= (1=p)(1—p9)

Next we consider 4-engine plane.

Example 3.(2-out-of-4: G system) From[5] it has six minimal path sets;
P ={1, 2}, P,=({1, 3}, Py={1, 4}

P,=1{2, 3}y, Ps=1{2, 4}, Ps={3, 4}
Thus the first bound on the reliability is

EV(p) =8, = lﬁ}P(Az‘)

= Dby T Dib3st PiPy+ Dab3 t Deb2 t+ D3Py
Since '
P(A\NAy) = D1 by b3 . PLANNAg) = b1 D2 D3 by
Hence the second bound is
h(Z)(p) — h“)(p) _SZ

= 1 V(p) — ZP(Ai)NAiy)

ISZ'1< ig <6

=hV(D) =31 b2y + b1 DDy D1 D3 by + by b3 Dy + D1 D2 D3 DY)

Similarly
RO = nP(p) + S,

= h(Z)(p) — ZP(AZI ﬂAzzﬂAz;;)

1<4) <4 <iy<6
=hP(p) + 1 02bs +b) bo by + D1 D3 Py +D2D3 Dy + 169 b2 D3 Dy
The 4 terms of 2¥(p) being products of 3 factors cancel 4 terms of

29(p), and the 3 terms pioapips of AP(p) cancel 3 of the 16 terms of
h(3)(1)).
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This results in
B9 = n®(p) — 1581 b3 D3 14

p) = h®@®) = () — b1 by b3 14
BO(p) = h(p) + 61 by b3 Pa

with 46 cancelling terms.

The 2-out-of-4 : G system is also a 3-out-of-4 : F system with four

minimal cut sets
K, ={1,2,3} K,=1{1,2,4} K;=1{1,3,4} K,=1{2,3,4}

() = 2PA)

=(1—p)(1=p)(1=23) + (1 =) (1= ) (1= py)
+ (1=p)(1=203) (1 —pg) + (1= p) (1 = p3) (1 = py)

2O = hD(p)— 61— 1) (1= 1) (1= p3) (1~ py)
7O = hP(p) +4(1— ) (1= p,) (1—13) (1 — py)
7)) = 1D(p) = BP(p) — (1= 1) (1= 12) (1= 53) (1 — 14)

There are 8 cancelling terms instead of 46 and much less computation

because 2% — 2% =48 fewer terms.

Example 4. We consider a 3-component series system and a 3-component
parallel system with success probabilities p;=0.6, p;=0.7, p3=0.8 in Fig.2

and Fig.3. By pivotal decomposition algorithm, series system reliability is

Wp)=p1 + (11, 0)+ 1 —py) - k04, D)
= p1{p2h(15, ) +(1— p) (05, p)} + (1~ p)A(04, )
= p{paps+(1—22) - 0} +(1—21) 0
= p1D2b3
= 0.336

— 1 2 3 —

Fig.2 3-component series system

parallel system reliability is
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Wp)=p1 * K1y, D)+ (1= pp) - 10y, 9)
= pi+1 + (1= Xpoh(15,0) +(1—py) 402, 0}
p1 (1 =p N oo+ (1= po)ps}
= 0.6+0.4(0.7+0.3x0.8)
= (.976

B e N

Fig.3 3-component parallel system
For a general non-series parallel system (having unequal probabilities of

success), the only known practical method of exact analysis is the path and
cut-set method.

Example 5.(7-component bridge system) Consider bridge system in fig.4.

E
/
(5]

Fig.4 7-component bridge system

There are 7 minimal path set;
P,={1,4,7}, P,={1,3,6}, P;={1,3,5,7}, P,={1,4,5,6},

P;={2,6}, Ps=1{2,3,4,7}, P;={2,5,7}
System reliability is

Kp) = prpapr + (L= p1pgpr) [p10ape+ (1~ prosps) p1pspspr + (1 — prpspstr)
“Ap1D4pspe+ (1 — D104bspe) pape + (1 — pape) Dapspsdr + (1 = popapadr) padsdr ]
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Example 6. (8-component complex system) Consider complex system in fig.5.

Fig.5 8-component complex system

There are 8 minimal path sets;

P,={14,7}, P,={2,5,8}, P;={1,3,5,8}), P,=1{1,4,6,8}, P5={2,3,4,7},
Ps=1{2,5,6,7}, P,=1{1,3,5,6,7}, P3s=1{2,3,4,6,8}
System reliability is

o) = pipspr + (L—p1pap7) [Dodsps + (1 —papspe){ prospsps + (1 — by bspsbs)
A p1oapeps + (L — p1ospeps) Dopapadr) + (1 — popspapr){ Dadspedr + (1 — Dodsped)
 { p103Dspepr + (1 — prospspedr) Dabsbabedst 1]

Now, we consider the following example in order to compare two
algorithms in computational complexity.

Example 7. In example 1, there are 4 minimal path sets

P={1,4}, P,={1,3,5}, P;={2,5}), P,={2,3,4}
By inclusion-exclusion algorithm, reliability function is

WD) = D1y + D1D3Ds + Db+ Dabspy — (D1 Dsdsbs + D1DaDsDs + D1DaD3Ds + D1D2D3Ds + DrDaDsDsDs

+ poadsds) + (D1Dab3babs + brbodadds + Drdabsbabs + bibedadubs) — DiDabsbads

= 104+ Drpsps t+ pods + podsps — (D1 DsDsbs + Drbabads + DrDababs + Dadababs) + Ap1babsbabs

By pivotal decomposition algorithm, reliability function is
R(p) =p1b4+ (1= p10)[ b1 D355 + (1 —p153ps) pads + (1 — pads) papspa}].
Thus pivotal decomposition algorithm is more useful for reliability

calculation in b-bridge structure.
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6. Computational Results

This section discusses the results obtained when  algorithms
inclusion-exclusion and pivotal decomposition were programed and run on a
variety of complex system reliability calculation problems.

Following tables represent reliability calculation of n-component structure
used two algorithms.

table 1. series structure

inclusion - exclusion pivotal decomposition
n=2 | pip2 pipz*+(1-p1)0
=3 | Pipeps pr{paps+(1-p2)0}+(1-p1)0
n=4 | pip2psps pilp2{pspat (1-p3)0+(1-p2)0}+(1-p1)0

table 2. parallel structure

inclusion - exclusion pivotal decomposition
n=2 | p1+pz-pPip2 pr+(1-p1p2
n=3 | p1+pz+p3—(PiP2+ P13t P2DP3) *P1P2D3 pi+(1-pi){pz*(1-p2)ps}

D1+P2+DP3+Pa— (D1D2*+P1D3+P1Da+D2D3
n=4 | +pgpa*+p3pa)+(DiD2ps*P1P2P4+PIP3P4 p1+(1-po)p2+(1-p2){ps+(1-ps)pa}]
+P2D3p4) - P1P2D3D4

By above tables, we show that in case of series structure, the
inclusion-exclusion algorithm is proper in computational complexity, but pivotal
decomposition algorithm is proper in computational complexity in case of
parallel structure. Now we compare the CPU time between two algorithms in
complex system. Table 3 displays elapsed computation time in CPU seconds
for each of the two algorithms.
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table 3. CPU Time for the algorithms

Seong Cheol Lee

# Min

(pivotal decomposition)

system(Algorithm) 1 2 3 4 5 mean [CPU sec
Paths
6-component paral fel 6 |53.455 |53.63s|53.555 | 53.27s | 53.59s | 53.50s | 5.35ms
(inclusion—exclusion)
4-component paral el 4 | 3.69s| 3.56s| 3.62s| 3.56s| 3.66s| 3.62s|0.36ms
(pivotal decomposition)
2-out-0f~4:G system 6 (59.54s(59.49s|59.05s 59. 155 |59. 195 | 59.28s | 5.93ms
(inclusion—exclusion)
S-component bridge system| -\ ool 50 67s|30.365 | 30.54s | 30.41s | 30.525| 3.0ms
{inclusion-exclusion)
S-component bridge system\ |, ,ol 5 aas| 4.07s| 4.12s| 3.94s| 4.08s|0.41ms
{pivotal decomposition)
7-component bridge system| .\ .o or i eg 05| 50.53s |50.60s|59.61s | 59.54 | 5.95ms
(inclusion-exclusion)
7-component bridge system) | 4 oy | 4 1as| 4.03s| 4.20s| 4.25s| 4.225|0.42ns
(prOtal decomDOSl 1 lon)
§-component bridge system| o 1 o<l 66.565 | 66.99s | 66.80s | 66.88s | 66.85s | 6.69ms
(inclusion-exclusion)
§-component bridge system| o | 4 o5l 5 78| 3.945| 3.98s| 3.865| 3.89s|0.30ms

* QOperation Environment

PC - IBM 586

CPU - Pentium |l 350MHz
RAM - 128MB (Synchronous DRAM 10OMHz)

0S - Windows 98

Compiler — Microsoft Visual C++ 6.0
0.08s/10000(iteration) = 8y s = 0.008ms

By above table, we suggest that pivotal decomposition algorithm provides
an efficient method for complex system. We expect that our method, applied
in this paper, is further extended to the case when components of the system

are given multi-states.
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