• 제목/요약/키워드: inverse tracking algorithm

검색결과 49건 처리시간 0.028초

Performance Enhancement of Whistle Sound Source Tracking Algorithm using Time-Scale Filter Based on Wavelet Transform

  • Moon, Serng-Bae
    • 한국항해항만학회지
    • /
    • 제28권2호
    • /
    • pp.135-140
    • /
    • 2004
  • A purpose of developing a sound source tracking system in this paper is to reduce the noise efficiently from the received signal by microphone array and measure the signal's time delay between the microphones. I have applied the wavelet analysis algorithm to the system and calculated the sound source's relative position For the performance evaluation, I have compared with the results of utilizing the digital filtering methods based on the FIR LPF using Kaiser window function and the inverse Chebyshev IIR LPF. As a result, I have confirmed the fact that 'time-scale' filter using inverse discrete wavelet transform was suitable for this system.

Object Tracking based on Relaxed Inverse Sparse Representation

  • Zhang, Junxing;Bo, Chunjuan;Tang, Jianbo;Song, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권9호
    • /
    • pp.3655-3671
    • /
    • 2015
  • In this paper, we develop a novel object tracking method based on sparse representation. First, we propose a relaxed sparse representation model, based on which the tracking problem is casted as an inverse sparse representation process. In this process, the target template is able to be sparsely approximated by all candidate samples. Second, we present an objective function that combines the sparse representation process of different fragments, the relaxed representation scheme and a weight reference prior. Based on some propositions, the proposed objective function can be solved by using an iteration algorithm. In addition, we design a tracking framework based on the proposed representation model and a simple online update manner. Finally, numerous experiments are conducted on some challenging sequences to compare our tracking method with some state-of-the-art ones. Both qualitative and quantitative results demonstrate that the proposed tracking method performs better than other competing algorithms.

닫힌 형태의 역기구학 해를 갖는 매니퓰레이터의 정밀도 개선 알고리즘 (An Accuracy Improvement Algorithm for the Manipulators with Closed-Form Inverse Kinematic Solutions)

  • 조혜경;조성호
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1093-1098
    • /
    • 2000
  • This paper presents an efficient algorithm for including the kinematic calibration data into the motion controller to improve the positioning accuracy of the manipulators. Rather than spending several iterations for finding the inverse solution of the calibrated kinematics, our approach requires only the nominal inverse solution and the calibrated forward kinematics for providing a better position command promptly. Thus, real-time application is guaranteed whenever the manipulators nominal inverse solution can be expressed in a closed form. Experimental results show that the line tracking performances can be remarkably improved by employing our algorithm.

  • PDF

전자전 위협체 역추적을 위한 송수신 모델링 및 검증 (Transmission Modeling and Verification for the Inverse Estimation of Electronic Warfare Threats)

  • 박소령;정회창;권재완;노상욱
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제13권4호
    • /
    • pp.112-123
    • /
    • 2017
  • 전자전 상황에서 수신기의 수집 변수를 토대로 RF 위협체를 역추적함으로서 효율적인 전자공격을 수행하려는 연구가 진행되고 있다. 본 논문에서는 다양하고 구체적인 전자전 상황에서 위협체 역추적 알고리즘의 성능을 검증할 수 있도록 하기 위하여, 전자파 수집 변수를 바탕으로 레이더 위협체, 전자전 수신기, 전자파 전송환경과 같은 전자전 구성 단위들의 기능을 모델링하여 전자전 송수신 시뮬레이터를 구축한다. 시뮬레이터의 실험 결과는 수 m 정도의 거리 추적 오차와 소수점 이하 크기의 각도 추적 오차를 보이며, 모노펄스 빔폭과 편각의 변화에 따른 각도 추적 오차의 변화가 이론적인 모델링의 결과와 동일한 양상을 보임으로써 레이더 위협체의 거리 및 각도 추적의 동작 원리가 시뮬레이터에 적절하게 반영되었음을 확인할 수 있다. 구축한 전자전 송수신 시뮬레이터는 전자전 수집 시스템에서 추출된 위협체의 특성 변수가 실제 위협체의 특성 변수에서 어떻게 변형되었는지를 관찰하고, 다양한 전자전 상황에서 수집된 변수를 토대로 구성한 위협체 역추적 시스템의 성능을 평가하는 데에 활용될 수 있다.

Novel Partitioning Algorithm for a Gaussian Inverse Wishart PHD Filter for Extended Target Tracking

  • Li, Peng;Ge, Hongwei;Yang, Jinlong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5491-5505
    • /
    • 2017
  • Use of the Gaussian inverse Wishart PHD (GIW-PHD) filter has demonstrated promise as an approach to track an unknown number of extended targets. However, the partitioning approaches used in the GIW-PHD filter, such as distance partition with sub-partition (DP-SP), prediction partition (PP) and expectation maximization partition (EMP), fails to provided accurate partition results when targets are spaced closely together and performing maneuvers. In order to improve the performance of a GIW-PHD filter, this paper presents a cooperation partitioning (CP) algorithm to solve the partitioning issue when targets are spaced closely together. In the GIW-PHD filter, the DP-SP is insensitive to target maneuvers but sensitive to the differences in target sizes, while EMP is the opposite. The proposed CP algorithm is a fusion approach of DP-SP and EMP, which employs EMP as a sub-partition approach after DP. Therefore, the CP algorithm will be sensitive to neither target maneuvers nor differences in target sizes. The simulation results show that the use of the proposed CP algorithm will improve the performance of the GIW-PHD filter when targets are spaced closely together.

역진자형 자주로보트의 2차원 평면에서 궤도주행제어에 관한 연구 (Trajectory Tracking Control of the Wheeled Inverse Pendulum Type Self - Contained Mobile Robot in Two Dimensional Plane)

  • 하윤수;유영호;하주식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제17권5호
    • /
    • pp.44-53
    • /
    • 1993
  • In this paper, we discuss on the control algorithm to make the wheeled inverse pendulum type mobile robot move in two dimensional plane. The robot considered in this paper has two independently driven wheels in same axel which suport and move it-self, and is assumed to have the fyro type sensor to know the inclination algle of the body and rotary encoders to know wheel's rotation angular velocity. The control algorithm is divided into three parts. The first part is for the posture and velocity control for forward-backward direction, the second is the steering control, and the last part is for the control of total system to track the given trajectory. We handle the running velocity control of the robot as part of the posture control to keep the balance because the posture relates deeply with the velocity and can be controlled by the velocities of the wheels. The control problem is analyzed as the tracking control, and the controller is realized with the state feedback and feed-forward of the reference velocity. Constructing the control system which contained one intergrator in forward path, we also realized the control system without observer for the estimation of the accumulated errors in the inclination angle of the body. To prevent the robot from being unstable state by sudden variation of the reference velocity when it starts and stops, or changes velocity, the reference velocity of which acceleration is slowly changing, is ordered to the robot. To control its steering, we give the different reference velocities for both wheels which are calculated from the desired angular velocity of the body. Finally, we presents the experimental results of the experimental robot Yamabico Kurara in which the proposed control algorithm had been implemented.

  • PDF

로봇 메니퓰레이터의 제어를 위한 특이점 회피 알고리즘의 비교 연구 (Singularity Avoidance Algorithms for Controlling Robot Manipulator: A Comparative Study)

  • 김상현;박재홍
    • 로봇학회논문지
    • /
    • 제12권1호
    • /
    • pp.42-54
    • /
    • 2017
  • Using an inverse of the geometric Jacobian matrix is one of the most popular ways to control robot manipulators, because the Jacobian matrix contains the relationship between joint space velocities and operational space velocities. However, the control algorithm based on Jacobian matrix has algorithmic singularities: The robot manipulator becomes unstable when the Jacobian matrix loses rank. To solve this problem, various methods such as damped and filtered inverse have been proposed, but comparative studies to evaluate the performance of these algorithms are insufficient. Thus, this paper deals with a comparative analysis of six representative singularity avoidance algorithms: Damped Pseudo Inverse, Error Damped Pseudo Inverse, Scaled Jacobian Transpose, Selectively Damped Inverse, Filtered Inverse, and Task Transition Method. Especially, these algorithms are verified through computer simulations with a virtual model of a humanoid robot, THORMANG, in order to evaluate tracking error, computational time, and multiple task performance. With the experimental results, this paper contains a deep discussion about the effectiveness and limitations of each algorithm.

Stereo Vision Based 3-D Motion Tracking for Human Animation

  • Han, Seung-Il;Kang, Rae-Won;Lee, Sang-Jun;Ju, Woo-Suk;Lee, Joan-Jae
    • 한국멀티미디어학회논문지
    • /
    • 제10권6호
    • /
    • pp.716-725
    • /
    • 2007
  • In this paper we describe a motion tracking algorithm for 3D human animation using stereo vision system. This allows us to extract the motion data of the end effectors of human body by following the movement through segmentation process in HIS or RGB color model, and then blob analysis is used to detect robust shape. When two hands or two foots are crossed at any position and become disjointed, an adaptive algorithm is presented to recognize whether it is left or right one. And the real motion is the 3-D coordinate motion. A mono image data is a data of 2D coordinate. This data doesn't acquire distance from a camera. By stereo vision like human vision, we can acquire a data of 3D motion such as left, right motion from bottom and distance of objects from camera. This requests a depth value including x axis and y axis coordinate in mono image for transforming 3D coordinate. This depth value(z axis) is calculated by disparity of stereo vision by using only end-effectors of images. The position of the inner joints is calculated and 3D character can be visualized using inverse kinematics.

  • PDF

A solution of inverse kinematics for manipulator by self organizing neural networks

  • Takemori, Fumiaki;Tatsuchi, Yasuhisa;Okuyama, Yoshifumi;Kanabolat, Ahmet
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.65-68
    • /
    • 1995
  • This paper describes trajectory generation of a riobot arm by self-organizing neural networks. These neural networks are based on competitive learning without a teacher and this algorithm which is suitable for problems in which solutions as teaching signal cannot be defined-e.g. inverse dynamics analysis-is adopted to the trajectory generation problem of a robot arm. Utility of unsupervised learning algorithm is confirmed by applying the approximated solution of each joint calculated through learning to an actual robot arm in giving the experiment of tracking for reference trajectory.

  • PDF

A discrete iterative learning control method with application to electric servo motor control

  • Park, Hee-J.;Cho, Hyung-S.;Oh, Sang-R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1387-1392
    • /
    • 1990
  • In this paper, an iterative learning control algorithm for unknown linear discrete systems is proposed by employing a parameter estimator together with an inverse system model. Regardless of initial error and inherent parameter uncertainty, a good tracking control performance is obtained using the proposed learning control algorithm characterized by recursive operations. A sufficient condition for convergency is provided to show the effectiveness of the proposed algorithm. To investigate the performance of the algorithm a series of simulations and experiments were performed for the tracking control of a servo motor.

  • PDF