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Abstract — In this paper, an iterative learning control
algorithm for unknown linear discrete systems is proposed by
employing a parameter estimator together with an inverse
system model.  Regardless of initial error and inherent
parameter uncertainty, a good tracking control performance
is obtained using the proposed learning control algorithm
characterized by recursive operations. A sufficient condition
for convergency is provided to show the effectiveness of the
proposed algorithm. To investigate the performance of the
algorithm a series of simulations and experiments were
performed for the tracking control of a servo motor.

I. Introduction

One of the superior capabilities of human workers over
their mechanical counterparts is that in some circumstance,
they can make use of their experience, either successful or
unsuccessful, to improve the performance. Such an ability is
called "earning capability, an inborn nature of living
animals.  On the other hand, a mechanical system will
repeat same mistakes until it is readjusted by the operator
because it does not have this ability.

Recently, there has been a growing interest in
intelligent control system, particularly, in learning control
systems. The iterative learning control as a type of the
learning control systems accomplishes its learning through
repetition or sequence of operations. In the iterative
learning control, the control input sequence for next
operation is determined by utilizing the experiences obtained
from the past operations such that the state trajectory of
the plant tracks the given desired trajectory as closely as
possible within a finite number of 1terations.  Several
research works are reported on designing such an iterative
learning controllers.  Arimoto et al. Fl—3] proposed an
iterative learning control scheme called '"Betterment
Process". In the algorithm, the time rate of error is utilized
to generate a new control input which, in turn, improves the
performance of the next operation. The algorithm is
extended to discrete system by Togai et al. [4]. But their
formulations require a priori knowledge of the plant in order
to determine stable gain matrix. To alleviate the difficulty
involved in determining stable gain matnix of previous work,
Oh et al.[5] combined a parameter estimation technique
with learning control method for a class of linear periodic
systems. However, since the sufficient condition for
convergency in [5] is expressed in terms of linear operators,
it is not easy to examine a priori whether the system
satisfies the condition. Moreover, the method in [5] which is
obtained for continuous time systems is not easily extended
to discrete systems due to the noncausality of the discrete
time version of the linear operators. On the other hand,
since the zero initial error condition should be assumed for
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every trial in the previous work {1-5], not only stability but
the convergency is not guaranteed when the initial error
between the plant output and the desired trajectory is not
zero. Even when an initial position preset mechanism is
installed in the learning controller to identically reset the
starting point for every operation the convergency of the
overall learning control system remains uncertain because it
is highly dependent upon the accuracy of the preset
mechanism.

To overcome the limitations of the previous studies,
an iterative learning control method for unknown linear
discrete systems is proposed. Specifically, the proposed
algorithm is composed of two parts : The first one is the
parameter estimator part which estimates the unknown
parameters of the plant to provide the information on the
plant characteristics. In contrast to the indirect method
used in the previous study [5]. a direct parameter estimation
scheme which directly evaluates the controller gains s
proposed to reduce the computational burden. The second
one i1s the controller part which generates control input for
the next operation based on the knowledge of the past
operations and the estimated inverse model of the plant.
Regardless of nonzero imitial and ihe parameter estimation
error, a sufficient condition for convergency is provided.
Also, simulation and experimental studies are performed for
the servo motor control to demonstrate the effectiveness of
the proposed algorithm.

To help understanding the mathematical derivations in
later sections, some notation are defined as followings:

For a matrix A, the transpose of A is deroted as AT and A
represents a generalized inverse of A [9]. I, and 0, denote
the n x n identity matrix and null matrix, respectively, and
diag(+) denotes diagonal matrix.  For given a finite

dimensional vector x, ||x|| denotes max |xI| and [Ix()|| is

defined as sup [|x(k}|.
keQ

natural matrix norm induced by the vector norm [10], that

is,

§
Also, the norm [|A|| denotes the

1A] = sup {IIAX]/IIx) < lIx]l # 0}

Il. An lterative Learning Control Algorithm for Discrete
Systems.

Consider a linear discrete system described by

x(k-+1) = & x(k) + T u(k) : x(0) = (o ke® (1)



where x is the n x 1 state vector and u is the m x 1 control
input vector. Also, € is the n x n system matrix assumed to
be stable, ' is the n x m input matrix. The set @ is defined
as { k: 0 <k <N} where N is the final step number.

Let { xq(k) : £ € @ } be given the desired state

trajectory and €~ be given as a tolerance bound. We wish
to find a control input sequence { u(k): k € @ } in the
iterative manner such that the corresponding output
trajectory { x(k) : k € @ } of the system in (1) satisfies

le(-) Il =l xa(-) =x(-) 1 <=

Now, we construct an iterative learning controller for
the system in (1) as follows:

xi(k+1) = & xi(k) + I ui(k) éQ.a
ei(k) = xa(k) — xi(k) ) 2.b
uin(k) = ui(k) + I”i {ei(k+1) — &; ei(k)} (2.0)

where T'; and ®; denote the estimated values of I' and &,
respectively and the suffix i denote the iteration ordinal
number of tnal. In the algorithm ,an initial input sequence
for first trial { ui(k) : k € @ } is arbitrarily chosen. The

details of the parameter estimation algorithm for | Ti: & ]
in the (2.c) are described in the chapter 1l

Now, the sufficient condition [6-8] for the
convergency of the proposed algorithm is shown by the
following theorem.

Theorem 1 : Consider a stable linear discrete system in (1).
if the initial error e;(0) = 0 for all i and if the eigenvalues of

matrix Iy, — [T are all within the unit circle, then, the
iterative learning controller in (2) yields

fe(-)ll, =0  asi—a 3)

Some preliminary results necessary for the proof of
convergence will be shown in advance.

Defining the n(N+1) x 1 vector % and the mN x 1
vector #; as

% = [x(0)" (D) xi(N)TT
% = [ui(0)" ui(1)"- - wi(N-1)" T

E)nd the n(N+1) x mN matrix P and the n(N+1) x n matrix

PR | } *)

the response of the system described in (1) can be written
as

& =P % + Qxi(0). (6)
If we assume that the inverse system of the plant described
by (1) takes following form

u(k) = [*{x{(k+1) — & x(k)), keQ, {7)

then an mN x n(N+1) matrix R is defined

Here, it is important to note to the following properties:

RP=1  and 9)
RQ=0. éw)

By letting % = [ ua(0)” uwa(1)"--+ wa(N-1)" 1" be a
sequence of the control input which generates the given

desired trajectory Z = [ x4(0) xd(l)I cee xd(N)T ]T preset
for finite control period, we obtain

& =P % + Qxq(0). (11)

Also, by substituting { &, T } in (7) with { &;, [;}, an mN x
m(N+1) matrix R; is defined which represents the estimated

value of R. Then, by using the matrix R-,! the proposed
control scheme described in (2.c) can be rewritten as

Uiy = Ui + R & (12)

where, the n(N+1) x 1 vector &; can be defined as

P [ei(0)" e(1)T- -+ e(N)' ]

Now, based upon above preliminary results, the
theorem 1 will be proven.

Proof of Theorem 1 : By subtracting (6) from (11). the
error equation obtained as

& =P (% — %)+ Qei(0) (13)
Premultiplying the both sides of (13) with the R matrix and

using the properties of (9) and (10), the following equation
is obtained

R&E=RP( % — %)+ RQei0)
= %4 — ;. (14)

If we define Z; as %4 — %, it follows from (13), (14) and
the condition e;(0) = 0 that

& =P Z; (15)
Zi=R &
= Uy — U (16)

Hence, using (15) and (16}, we get
Zi = Zi — (Ui — i)
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=Zi-Ri &
= Z;—R{ P 2
=H; Z; (17)

where the mN x mN matrix H; denotes (I | — RiP ) which
m

will be called learning transition matrix in the sequel. Here,
the learning transition matrix H; can be expressed as the
following lower triangular block matrix :

H; = hl M
| R A !
A |
e S |
L RN STRN TRy R
(18)
[ forj=1
=1
U Pe T forj> 1

where @ represents ( — &). If we consider (17}, it is easy to
see that Z; converges to zero only under the condition that
all eigenvalues of the learning transition matrix H; are
located within the unit circle in complex plane. Since Hj is a
lower triangular block matrix, this is equivalent to the

condition that the eigenvalues of (I, — f‘ﬂ‘) are all within
the unit circle in complex plane. Hence, it is obvious that

Zi=Ug— U —0 asi—uw (19)
and from (15),
&—0 asi—uw. (20)

Therefore, the statement in (3) is obvious.
This completes the proof.

Several remarks are provided to avoid ambiguity
regarding the theorem 1.  First, it is noted that in
agreement with previous work [1], only the accuracy of a
priori knowledge or estimation regarding the input matrix I'
determines whether the iterative learning control s
convergent or not since the eigenvalues of the learning
transition matrix H; are determined by from input matrix
related terms.  Secondly, it is noted that uniform

convergency can be assured if { T; , & } is suitably
estimated in such a way that the learning transition matrix
satisfies a more strong condition, || H; || < 1, than the
condition regarding the eigenvalues of the matnx H;i in
Theorem 1.

In the next chapter, a direct parameter estimation scheme 1is
proposed and its suitability for the proposed control are
checked.

HI. A direct parameter estimation scheme.

To complete the proposed learning control method,
we now propose a direct parameter estimation scheme, in
which the estimation is performed with respect to controller

gain [ T* : T*® | directly, not with respect to system matrix |
® : '] as can be seen in the preceded study {5]. In
comparison with the indirect method, the proposed direct
method reduces the computation time as well as memory
size. Based upon the inverse model defined in (8), the
following equation holds
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u(k) = 84(k). keQ

where the m x 2n parameter matrix 8 and 2n x 1 data
vector ¢ are defined as

(21)

82 1%
6(k) = [x(r) x(k) " |1

Therefore, we wish to identify 2nm parameters of 8. To do
this, let the matrix 8 be partitioned as:

8=1[0" (22)

o

where 617 is a 2n x 1 row vector. Then, (21) can also be
described by using the partitioned vector as

wi(k) = 676(k),  j=1.--.m

(23)
where ui(k) is the j th element of the m x 1 input vector
u(k). Now, we may apply a conventional recursive

estimation method [11] with regard to the relation (21).
Thatis, for j=1,---.m, let the estimated parameter vector

# in the i th operation be given by
1

Bilk+1) = Bi(k) + GI(k+1)g)(k)" l(k),

1

(24)

where Gi(k) is the estimator gain matrix and &i(k) is
1 1
defined as [11]

el(k) =
1
Here, for each operation trial, all the initial values are given

appropriately as in the conventional recursive estimation
method [11].

= ul(k) — 0i(k) "o (k). (25)

Now, the standard parameter estimation algorithms
for the stable plant provides the following properties [12,13],
forallj=1, .- mandi=1, ---

o 8i(k) is bounded for all k, (26)
1
o lim { Bi(k) — #i(k—=h)} =0  for any finite intéger h
k- ! !
(27)
e lim { €l(k) }2 =0, (28)
k- o0 !

Since the parameter estimation algorithm is continued for
every trial in the proposed algorithm, i ~ w implies k — w.
And the standard estimation algorithm satisfies above
conditions (26-28), we get the following important
properties of the proposed parameter estimation method:

1) It follows from (26) and (27) that R; is bounded and

asymptotically invariant as the number of iteration
increases,

2} From (28), it is obvious that
% —Ri K =1%-RiP %
= H; %;
=0 as i o . (29)



Since the above properties are satisfied for arbitrar
input sequence %;, the conditions to satisfies (29
obtained as

control
can be

?

Hi =0 and (30)
Hence, the convergenty of the proposed control scheme is
guaranteed since the proposed parameter estimation scheme
reduces both H; down to zero as iteration proceeds.

The structure of the proposed learning control method
in (2) with the parameter estimator in (24—25) is shown in
Fig.1.

IV. Numerical Example

To show the effectiveness of the proposed learning
control method, a series of computer simulations are
performed for the mathematical model of an electric servo
motor system. Also, through the examples, the effect of the
parameter miss—matching is investigated to check the
applicability of the proposed algorithm using the biased
parameter estimator.

To show the performance of the proposed learning
control scheme, a servo motor system shown in Fig.3 is
modeled as a 2nd order system and is given by:

ot = [ S55826 SO Tugg + [ 99814 Tug)
x(k) = [ a(k) . a(k) ]", (31)

where @, @ represent the angular position and velocity,
respectively. The sampling time T is chosen to be 0.02 sec
and learning operation is assumed to be performed during k
€ [0.200]. Let the desired state trajectory xa(k) = [ aq(k) .

ia(k) ]" be given by
2¢ kT <3

257(1 — kT-1)),
ra(k) = { ( (C)c,)S (x( D raq. elsewhere + (32)
. s kT—-1 2< kT <3
d(k) = { 257 8'" (x{ E rad./sec elge\t(vhe?e .(33)

The results in Theorem 1 are checked by letting

controller parameters [ ['*: [*® | be fixed for all trials. Since
the eigenvalues of the learning transition matrix Hy are all

identical to a value A = (1-I"T') when m = 1, the effects of
the ) to the convergency are investigated. Fig.2 (a) shows
the mean absolute error convergence when ) is assigned by

0.3, 0.0, —0.9 and 1.1, respectively while setting b =9 for

alt cases. f & = & ie. H; = diag(A), the uniform
convergence is guaranteed when A < 1 since the ratio of the
error written as || &i.fl /|| &ll = A is less than 1 for all i.
For the case A = 1.1, as expected, the error quickly diverges
in contrast to other cases. For a certain value of A, the 1 —

[T = A has infinite number of solutions of the 1 x n row
vector [". However, the convergence characteristics are

invariant for any arbitrary choice of the solution I since the
convergence of [} &l does not depend upon the particular

choice of T'* but upon X.

V. Experiments

A series of experiments are performed for the tracking
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control of electric servo motor to show the applicability of
the proposed learning control. The experiment is set up for
the servo motor model used in the simulation and the setup
is shown in Fig.3. The system is composed of a motor
drive, a position control board with A/D converter and an
IBM—PC computer. An analog servo for internal velocity
feedback and a PWM amplifier is provided in the motor
drive. The position control board adopting INTEL 8032 acts
as a proportional gain position controller to generate the
voltage input to analog servo using both the encoder
feedback and the command input from the PC. The
controller has a 12bit A/D converter to transfer the angular
velocity from the tacho generator to the PC. The personal
computer computes the proposed learning control
algorithms and enables the communication between the PC
and the position controller board through a serial 1/O port
using standard RS—232C. It is noted that the servo motor
including the motor drive and the position controlier is
assumed to be the plant to be controlled by the proposed
learning control scheme.

In this experiment, the recursive least square method
is adopted as a parameter estimation method. In Fig.4
(a)(b). the tracking responses for the desired trajectory in

(32) and (33) are plotted when x;(0) = {107, 0][. Since the
true values of the real plant parameters are unknown, the
eigenvalues of the learning transition matrix can not be
evaluated theoretically. Nevertheless, the convergency rate

can arbitrarily be assigned by substituting 't with (1-A) I't
in the algorithm (2.c) since in this case, the conditions H; =

diag(A) and RiQ = 0 are ensured as iteration proceeds.
Obviously, both position and velocity trajectory track the
desired trajectories from the second operation as shown in
Fig.4 (a) since the proposed parameter estimation scheme

reduces both Hj and RiQ to zero after the first operation.
Fig.4 (b) shows the tracking performance for A is 0.3.

To investigate the adaptation capability of the
proposed control against the long term parameter change,
the case when the position feedback gain k;, within the plant
varies from 1 to 2 after the 5th trial is also considered in the
experiment although such a sudden variation is hardly found
in real plant. As shown in Fig.5, it can be seen that the
mealm absolute error is successfully recovered after the 6th
tnal.

VI. Concluding Remarks

An iterative learning control algorithm for the
unknown linear discrete systems was proposed in which the
direct parameter estimation was employed with respect to
the controller gain matrix directly. A sufficient condition for
convergency of the proposed algorithm was given regardless
of the initial error and parameter estimation error. The
merits of the proposed control schemes in comparison with
others are as follows: First, it can effectively cope with the
long term parameter variations since the installed parameter
estimator works at every trial iteration. Second, for a class
of systems which can be approximately considered as a
linear system, the convergency speed is wvery high in
comparison with other algorithms.  Third, the proposed
algorithm shows that the initial error affects oaly the control
accuracy of the transient period but not the convergency of
the whole learning system.
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