• Title/Summary/Keyword: inverse source problem

Search Result 69, Processing Time 0.025 seconds

A Study on the Synthesis of TE and TM Scattering Patterns of One-Dimensional Inhomogeneous Dielectric Media (일차원 비균질 유전매질의 TE 및 TM 산란패턴 합성에 관한 연구)

  • Nam, June-Seok;Jun, Sang-Jae;Jeon, Hoo-Dong;Jung, Jun-Sik;Park, Eui-Joon
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.69-73
    • /
    • 2003
  • In this paper, a synthesis method for the desired scattering pattern is presented when illuminating by TE-polarized and TM-polarized plane waves to arbitrary dielectric material. It is considered that the one-dimensional dielectric media are inhomogeneously distributed with continuously varying dielectric constants. Accordingly the desired patterns and the corresponding source distributions are inversely transformed by the proposed algorithm which are based on the one-dimensional inverse scattering problem. Some bandstop spatial filter are illustrated for applications.

  • PDF

Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique

  • Manolis, G.D.;Makra, Konstantia;Dineva, Petia S.;Rangelov, Tsviatko V.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.161-205
    • /
    • 2013
  • We study seismically induced, anti-plane strain wave motion in a non-homogeneous geological region containing tunnels. Two different scenarios are considered: (a) The first models two tunnels in a finite geological region embedded within a laterally inhomogeneous, layered geological profile containing a seismic source. For this case, labelled as the first boundary-value problem (BVP 1), an efficient hybrid technique comprising the finite difference method (FDM) and the boundary element method (BEM) is developed and applied. Since the later method is based on the frequency-dependent fundamental solution of elastodynamics, the hybrid technique is defined in the frequency domain. Then, an inverse fast Fourier transformation (FFT) is used to recover time histories; (b) The second models a finite region with two tunnels, is embedded in a homogeneous half-plane, and is subjected to incident, time-harmonic SH-waves. This case, labelled as the second boundary-value problem (BVP 2), considers complex soil properties such as anisotropy, continuous inhomogeneity and poroelasticity. The computational approach is now the BEM alone, since solution of the surrounding half plane by the FDM is unnecessary. In sum, the hybrid FDM-BEM technique is able to quantify dependence of the signals that develop at the free surface to the following key parameters: seismic source properties and heterogeneous structure of the wave path (the FDM component) and near-surface geological deposits containing discontinuities in the form of tunnels (the BEM component). Finally, the hybrid technique is used for evaluating the seismic wave field that develops within a key geological cross-section of the Metro construction project in Thessaloniki, Greece, which includes the important Roman-era historical monument of Rotunda dating from the 3rd century A.D.

Fast numerical methods for marine controlled-source electromagnetic (EM) survey data based on multigrid quasi-linear approximation and iterative EM migration (다중격자 준선형 근사 및 반복적 전자탐사 구조보정법에 기초한 해양 인공송신 전자탐사 자료의 빠른 수치해석 기법)

  • Ueda, Takumi;Zhdanov, Michael S.
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.60-67
    • /
    • 2008
  • In this paper we consider an application of the method of electromagnetic (EM) migration to the interpretation of a typical marine controlled-source (MCSEM) survey consisting of a set of sea-bottom receivers and a moving electrical bipole transmitter. Three-dimensional interpretation of MCSEM data is a very challenging problem because of the enormous number of computations required in the case of the multi-transmitter and multi-receiver data acquisition systems used in these surveys. At the same time, we demonstrate that the MCSEM surveys with their dense system of transmitters and receivers are extremely well suited for application of the migration method. In order to speed up the computation of the migration field, we apply a fast form of integral equation (IE) solution based on the multigrid quasi-linear (MGQL) approximation which we have developed. The principles of migration imaging formulated in this paper are tested on a typical model of a sea-bottom petroleum reservoir.

Identification of the Sectional Distribution of Sound Source in a Wide Duct (넓은 덕트 단면내의 음원 분포 규명)

  • Heo, Yong-Ho;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.87-93
    • /
    • 2014
  • If one identifies the detailed distribution of pressure and axial velocity at a source plane, the position and strength of major noise sources can be known, and the propagation characteristics in axial direction can be well understood to be used for the low noise design. Conventional techniques are usually limited in considering the constant source characteristics specified on the whole source surface; then, the source activity cannot be known in detail. In this work, a method to estimate the pressure and velocity field distribution on the source surface with high spatial resolution is studied. The matrix formulation including the evanescent modes is given, and the nearfield measurement method is proposed. Validation experiment is conducted on a wide duct system, at which a part of the source plane is excited by an acoustic driver in the absence of airflow. Increasing the number of evanescent modes, the prediction of pressure spectrum becomes further precise, and it has less than -25 dB error with 26 converged evanescent modes within the Helmholtz number range of interest. By using the converged modal amplitudes, the source parameter distribution is restored, and the position of the driver is clearly identified at kR = 1. By applying the regularization technique to the restored result, the unphysical minor peaks at the source plane can be effectively suppressed with the filtering of the over-estimated pure radial modes.

신속한 3차원 전자탐사 모델링

  • Jo, In-Gi;Kim, Ha-Rim
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.1
    • /
    • pp.63-71
    • /
    • 2002
  • The integral equation method is a powerful tool for electromagnetic numerical modeling. But the difficulty of this technique is the size of their linear equations, which demands excessive memory and calculation time to invert. This limitation of the integral equation method becomes critical in inverse problem. To overcome this limitation, a lot of approximation and series methods, such as conventional Born, modifed Born and extended Born, were developed. But all the methods need volume integration of Green tensor, which is very time consuming. In electromagnetic theory, Green tensor rapidly decreases as the distance between source and field cell increases. Therefore, the source cell which are far away from the field cell does not make an effect on the electric field of the field cell. Consequently, by ignoring the effect of Green tensor due to far away source cells, computing time for electromagnetic numerical modeling can be reduced dramatically. Comparisons of this new method against a full integral equation, extended Born approximation and series code show that the method is accurate enough much less time consuming.

  • PDF

Feasibility Study of EEG-based Real-time Brain Activation Monitoring System (뇌파 기반 실시간 뇌활동 모니터링 시스템의 타당성 조사)

  • Chae, Hui-Je;Im, Chang-Hwan;Lee, Seung-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.258-264
    • /
    • 2007
  • Spatiotemporal changes of brain rhythmic activity at a certain frequency have been usually monitored in real time using scalp potential maps of multi-channel electroencephalography(EEG) or magnetic field maps of magnetoencephalography(MEG). In the present study, we investigate if it is possible to implement a real-time brain activity monitoring system which can monitor spatiotemporal changes of cortical rhythmic activity on a subject's cortical surface, neither on a sensor plane nor on a standard brain model, with a high temporal resolution. In the suggested system, a frequency domain inverse operator is preliminarily constructed, considering the individual subject's anatomical information, noise level, and sensor configurations. Spectral current power at each cortical vertex is then calculated for the Fourier transforms of successive sections of continuous data, when a single frequency or particular frequency band is given. An offline study which perfectly simulated the suggested system demonstrates that cortical rhythmic source changes can be monitored at the cortical level with a maximal delay time of about 200 ms, when 18 channel EEG data are analyzed under Pentium4 3.4GHz environment. Two sets of artifact-free, eye closed, resting EEG data acquired from a dementia patient and a normal male subject were used to show the feasibility of the suggested system. Factors influencing the computational delay are investigated and possible applications of the system are discussed as well.

The estimation of thermal diffusivity using NPE method (비선형 매개변수 추정법을 이용한 열확산계수의 측정)

  • 임동주;배신철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1679-1688
    • /
    • 1990
  • The method of nonlinear parameter estimation(NPE), which is a statistical and an inverse method, is used to estimate the thermal diffusivity of the porous insulation material. In order to apply the NPE method for measuring the thermal diffusivity, and algorithm for programing suitable to IBM personal computer is established, and is studied the statistical treatment of experimental data and theory of estimation. The experimental data obtained by discrete measurement using a constant heat flux technique are used to find the boundary conditions, initial conditions, and the thermal diffusivity, and then the final values are compared with the values obtained by some different methods. The results are presented as follows:(1) NPE method is used to establish the estimation of the thermal diffusivity and compared results with experimental output shows, that this method can be applicable to define the thermal diffusivity without considering hear flux types. (2) Because of all of the temperatures obtained by the discrete measurement on each steps of time are used to estimate the thermal diffusivity. Although some error in the temperature measurements of temperature are included in estimating process, its influences on the final value are minimzed in NPE method. (3) NPE method can reduce the experimental time including the time of data collecting in a few minutes and can take smaller specimen compared with steady state method. If the tube-type furnace is used, also the adjusting time of surrounding temperature can be reduced.

Optimized inverse distance weighted interpolation algorithm for γ radiation field reconstruction

  • Biao Zhang;Jinjia Cao;Shuang Lin;Xiaomeng Li;Yulong Zhang;Xiaochang Zheng;Wei Chen;Yingming Song
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.160-166
    • /
    • 2024
  • The inversion of radiation field distribution is of great significance in the decommissioning sites of nuclear facilities. However, the radiation fields often contain multiple mixtures of radionuclides, making the inversion extremely difficult and posing a huge challenge. Many radiation field reconstruction methods, such as Kriging algorithm and neural network, can not solve this problem perfectly. To address this issue, this paper proposes an optimized inverse distance weighted (IDW) interpolation algorithm for reconstructing the gamma radiation field. The algorithm corrects the difference between the experimental and simulated scenarios, and the data is preprocessed with normalization to improve accuracy. The experiment involves setting up gamma radiation fields of three Co-60 radioactive sources and verifying them by using the optimized IDW algorithm. The results show that the mean absolute percentage error (MAPE) of the reconstruction result obtained by using the optimized IDW algorithm is 16.0%, which is significantly better than the results obtained by using the Kriging method. Importantly, the optimized IDW algorithm is suitable for radiation scenarios with multiple radioactive sources, providing an effective method for obtaining radiation field distribution in nuclear facility decommissioning engineering.

The Selection of Measurement Positions for BEM Based NAH Using a Non-conformal Hologram to Reduce the Reconstruction Error

  • Oey, Agustinus;Ih, Jeong-Guon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1018-1021
    • /
    • 2007
  • This paper explores the use of BEM based NAH to reconstruct the surface vibration of a plate in a rectangular finite cavity, in which the distances between sensors and the nearest points on the source surface are not equal. In such circumstances, different degree of information on propagating and non-propagating wave components will be detected by sensors at different positions, as well as the influence of measurement noise will vary significantly from the nearest points of measurement to the farthest ones. On the other hand, the condition number of the vibro-acoustic transfer function matrix relating normal surface velocities and field pressures will becomes high, numerically indicating an increase of linear dependency between rows of transfer function matrix. The combination of poor measurement and high condition number will result inaccurate reconstruction. Therefore, one approach to be investigated in this work is to select the measurement positions in such ways that reduce measurement redundancy, as it indicated by the condition number. The improvement is found to be significant in the numerical simulations utilizing two different criterions, spanning from over-determined to under-determined cases, and in the validation experiment.

  • PDF

Sensor Calibration of a Helmet MEG System (헬멧형 뇌자도 장치의 센서 교정)

  • Kwon, H.;Kim, K.;Yu, K.K.;Kim, J.M.;Lee, Y.H.
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.57-61
    • /
    • 2010
  • We have developed a whole-head MEG system for basic brain research and clinical application. The sensor system consists of a 152 SQUID gradiometer array oriented and located in a suitable way to cover a whole head of the human. The system measures magnetic fields generated by neuronal currents in the brain to get information on the brain activities. For this purpose, the field sensitivity determined by the position, orientation and geometry of the pickup coil as well as amplification factor of the electronic circuits should be known precisely. However, the position and orientation of the pickup coil might be changed from the designed specifications during cool down of the dewar and it is necessary to characterize the field sensitivity. In this study, we made calibration systems to determine the actual position and orientation of the 152 pickup coils and compared the localization results of the N100m source in the auditory cortex.