Fast numerical methods for marine controlled-source electromagnetic (EM) survey data based on multigrid quasi-linear approximation and iterative EM migration

다중격자 준선형 근사 및 반복적 전자탐사 구조보정법에 기초한 해양 인공송신 전자탐사 자료의 빠른 수치해석 기법

  • Ueda, Takumi (Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Zhdanov, Michael S. (Department of Geology and Geophysics, University of Utah)
  • 상전장 (일본 산업기술종합연구소 지구자원환경연구부문) ;
  • Published : 2008.02.29

Abstract

In this paper we consider an application of the method of electromagnetic (EM) migration to the interpretation of a typical marine controlled-source (MCSEM) survey consisting of a set of sea-bottom receivers and a moving electrical bipole transmitter. Three-dimensional interpretation of MCSEM data is a very challenging problem because of the enormous number of computations required in the case of the multi-transmitter and multi-receiver data acquisition systems used in these surveys. At the same time, we demonstrate that the MCSEM surveys with their dense system of transmitters and receivers are extremely well suited for application of the migration method. In order to speed up the computation of the migration field, we apply a fast form of integral equation (IE) solution based on the multigrid quasi-linear (MGQL) approximation which we have developed. The principles of migration imaging formulated in this paper are tested on a typical model of a sea-bottom petroleum reservoir.

이 논문에서 우리는 해저용 수신기들과 이동하는 전기적 양극송신기의 한 조로 이루어진 전형적인 해양 인공송신 전자탐사 (MCSEM) 방법에 의해 얻어진 자료 해석에 전자탐사 구조보정법의 적용을 다룬다. 이 연구에서와 같이 다중 송신기와 다중 수신기를 이용해 획득된 자료는 방대한 컴퓨터 계산을 요하기 때문에 MCSEM자료의 3차원적 해석은 매우 도전적인 문제이다. 이와 동시에, 우리는 조밀하게 송신 및 수신기를 위치 시켜야 하는 이 MCSEM시스템은 구조보정법의 적용에 아주 적합하다는 것을 보여줄 것이다. 구조보정장 계산의 속도를 증가시키기 위해 우리는 직접 개발한 다중격자 준선형 (MGQL) 근사법에 기초한 적분방정식 해의 빠른 형태를 적용시켰다. 이 논문에서 공식화된 구조보정 영상 원리는 전형적인 해저 석유 저류층 모델에 적용되어 시험 되었다.

Keywords

References

  1. Constable, S., and Srnka, L. J., 2007, An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration: Geophysics 72, WA3-WA12. doi: 10.1190/1.2432483
  2. Constable, S., and Weiss, C. J., 2006, Mapping thin resistors and hydrocarbons with marine EM methods: insights from 1D modelling: Geophysics 71, G43-G51. doi: 10.1190/1.2187748
  3. Edwards, N., 2005, Marine controlled source electromagnetics: principles, methodologies, future commercial applications: Surveys in Geophysics 26, 675-700. doi: 10.1007/s10712-005-1830-3
  4. Eidesmo, T., Ellingsrud, S., MacGregor, L. M., Constable, S., Sinha, M. C., Johansen, S., Kong, F. N., and Westerdahl, H., 2002, Sea bed logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas: First Break 20, 144-152
  5. Ellingsrud, S., Eidesmo, T., Johansen, S., Sinha, M. C., MacGregor, L. M., and Constable, S., 2002, Remote sensing of hydrocarbon layers by sea bed logging (SBL): results from a cruise offshore Angola: The Leading Edge 21, 972-982. doi: 10.1190/1.1518433
  6. Gao, G.,Torres-Verdin, C., and Fang, S., 2004, Fast3Dmodelling of borehole induction measurements in dipping and anisotropic formations using a novel approximation technique: Petrophysics 45, 335-349
  7. Hursan, G., and Zhdanov, M. S., 2002, Contraction integral equation method in three-dimensional electromagnetic modelling: Radio Science 37, 1089-2002. doi: 10.1029/2001RS002513
  8. Kasaya, T., Goto, T., and Takagi, R., 2006, Marine electromagnetic observation technique and its development - for crustal structure survey: Butsuri-Tansa 59, 585-594 https://doi.org/10.3124/segj.59.585
  9. Mittet, R., Maao, F., Aakervik, O. M., and Ellingsrud, S., 2005, A two-step approach to depth migration of lowfrequency electromagnetic data: 75th Annual International Meeting, SEG, Expanded Abstracts, 522-525
  10. Portniaguine, O., and Zhdanov, M. S., 1999, Focusing geophysical inversion images: Geophysics 64, 874-887. doi: 10.1190/1.1444596
  11. Tada, N., and Seama, K., 2006, Surveys of the oceanic crust resistivity structure using a magnetometric resistivity method: Butsuri-Tansa 59, 171-180 https://doi.org/10.3124/segj.59.171
  12. Tompkins, M. J., 2004, Marine controlled-source electromagnetic imaging for hydrocarbon exploration: interpreting subsurface electrical properties: First Break 22, 27-33
  13. Ueda, T., and Zhdanov, M. S., 2006, Fast numerical modelling of multitransmitter electromagnetic data using multigrid quasi-linear approximation: IEEE Transactions on Geoscience and Remote Sensing 44, 1428-1434. doi: 10.1109/TGRS.2006.864386
  14. Zhdanov, M. S., 1981, Continuation of nonstationary electromagnetic fields in geoelectrical problems: Izv. Akad. Nauk SSSR: Fizika Zemly 12, 60-69
  15. Zhdanov, M. S., 1999, Electromagnetic migration: in Deep Electromagnetic Exploration, Springer-Verlag, Narosa Publishing House, 283-298
  16. Zhdanov, M. S., 2001, Method of broad band electromagnetic holographic imaging: US Patent # 6,253,100 B1
  17. Zhdanov, M. S., 2002, Geophysical Inverse Theory and Regularization Problems, Elsevier
  18. Zhdanov, M. S., and Frenkel, M. A., 1983a, The solution of the inverse problems on the basis of the analytical continuation of the transient electromagnetic field in reverse time: Journal of Geomagnetism and Geoelectricity 35, 747-765 https://doi.org/10.5636/jgg.35.747
  19. Zhdanov, M. S., and Frenkel, M. A., 1983b, Electromagnetic migration in Hjelt, S. E., ed., The development of the deep geoelectric model of the baltic shield, Part 2, Univ. of Oulu, Oulu, 37-58
  20. Zhdanov, M. S., and Fang, S., 1996, Quasi-linear approximation in 3D EM modelling: Geophysics 61, 646-665. doi: 10.1190/1.1443994
  21. Zhdanov, M. S., and Keller, G., 1994, The geoelectrical methods in geophysical exploration: Elsevier
  22. Zhdanov, M. S., Traynin, P., and Booker, J., 1996, Underground imaging by frequency domain electromagnetic migration: Geophysics 61, 666-682. doi: 10.1190/1.1443995
  23. Zhdanov, M. S., and Traynin, P., 1997, Migration versus inversion in electromagnetic imaging technique: Journal of Geomagnetism and Geoelectricity 49, 1415-1437 https://doi.org/10.5636/jgg.49.1415