Browse > Article

Fast numerical methods for marine controlled-source electromagnetic (EM) survey data based on multigrid quasi-linear approximation and iterative EM migration  

Ueda, Takumi (Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST))
Zhdanov, Michael S. (Department of Geology and Geophysics, University of Utah)
Publication Information
Geophysics and Geophysical Exploration / v.11, no.1, 2008 , pp. 60-67 More about this Journal
Abstract
In this paper we consider an application of the method of electromagnetic (EM) migration to the interpretation of a typical marine controlled-source (MCSEM) survey consisting of a set of sea-bottom receivers and a moving electrical bipole transmitter. Three-dimensional interpretation of MCSEM data is a very challenging problem because of the enormous number of computations required in the case of the multi-transmitter and multi-receiver data acquisition systems used in these surveys. At the same time, we demonstrate that the MCSEM surveys with their dense system of transmitters and receivers are extremely well suited for application of the migration method. In order to speed up the computation of the migration field, we apply a fast form of integral equation (IE) solution based on the multigrid quasi-linear (MGQL) approximation which we have developed. The principles of migration imaging formulated in this paper are tested on a typical model of a sea-bottom petroleum reservoir.
Keywords
electromagnetic method; marine CSEM; integral equation; quasi-linear approximation; electromagnetic migration; numerical method; inverse problem;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kasaya, T., Goto, T., and Takagi, R., 2006, Marine electromagnetic observation technique and its development - for crustal structure survey: Butsuri-Tansa 59, 585-594   DOI
2 Tada, N., and Seama, K., 2006, Surveys of the oceanic crust resistivity structure using a magnetometric resistivity method: Butsuri-Tansa 59, 171-180   DOI
3 Zhdanov, M. S., and Frenkel, M. A., 1983a, The solution of the inverse problems on the basis of the analytical continuation of the transient electromagnetic field in reverse time: Journal of Geomagnetism and Geoelectricity 35, 747-765   DOI
4 Zhdanov, M. S., Traynin, P., and Booker, J., 1996, Underground imaging by frequency domain electromagnetic migration: Geophysics 61, 666-682. doi: 10.1190/1.1443995   DOI   ScienceOn
5 Constable, S., and Weiss, C. J., 2006, Mapping thin resistors and hydrocarbons with marine EM methods: insights from 1D modelling: Geophysics 71, G43-G51. doi: 10.1190/1.2187748
6 Edwards, N., 2005, Marine controlled source electromagnetics: principles, methodologies, future commercial applications: Surveys in Geophysics 26, 675-700. doi: 10.1007/s10712-005-1830-3   DOI
7 Zhdanov, M. S., and Frenkel, M. A., 1983b, Electromagnetic migration in Hjelt, S. E., ed., The development of the deep geoelectric model of the baltic shield, Part 2, Univ. of Oulu, Oulu, 37-58
8 Zhdanov, M. S., 2002, Geophysical Inverse Theory and Regularization Problems, Elsevier
9 Constable, S., and Srnka, L. J., 2007, An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration: Geophysics 72, WA3-WA12. doi: 10.1190/1.2432483
10 Gao, G.,Torres-Verdin, C., and Fang, S., 2004, Fast3Dmodelling of borehole induction measurements in dipping and anisotropic formations using a novel approximation technique: Petrophysics 45, 335-349
11 Zhdanov, M. S., 1999, Electromagnetic migration: in Deep Electromagnetic Exploration, Springer-Verlag, Narosa Publishing House, 283-298
12 Tompkins, M. J., 2004, Marine controlled-source electromagnetic imaging for hydrocarbon exploration: interpreting subsurface electrical properties: First Break 22, 27-33
13 Ueda, T., and Zhdanov, M. S., 2006, Fast numerical modelling of multitransmitter electromagnetic data using multigrid quasi-linear approximation: IEEE Transactions on Geoscience and Remote Sensing 44, 1428-1434. doi: 10.1109/TGRS.2006.864386   DOI   ScienceOn
14 Ellingsrud, S., Eidesmo, T., Johansen, S., Sinha, M. C., MacGregor, L. M., and Constable, S., 2002, Remote sensing of hydrocarbon layers by sea bed logging (SBL): results from a cruise offshore Angola: The Leading Edge 21, 972-982. doi: 10.1190/1.1518433   DOI   ScienceOn
15 Zhdanov, M. S., 1981, Continuation of nonstationary electromagnetic fields in geoelectrical problems: Izv. Akad. Nauk SSSR: Fizika Zemly 12, 60-69
16 Zhdanov, M. S., and Keller, G., 1994, The geoelectrical methods in geophysical exploration: Elsevier
17 Zhdanov, M. S., and Fang, S., 1996, Quasi-linear approximation in 3D EM modelling: Geophysics 61, 646-665. doi: 10.1190/1.1443994   DOI   ScienceOn
18 Mittet, R., Maao, F., Aakervik, O. M., and Ellingsrud, S., 2005, A two-step approach to depth migration of lowfrequency electromagnetic data: 75th Annual International Meeting, SEG, Expanded Abstracts, 522-525
19 Eidesmo, T., Ellingsrud, S., MacGregor, L. M., Constable, S., Sinha, M. C., Johansen, S., Kong, F. N., and Westerdahl, H., 2002, Sea bed logging (SBL), a new method for remote and direct identification of hydrocarbon filled layers in deepwater areas: First Break 20, 144-152
20 Hursan, G., and Zhdanov, M. S., 2002, Contraction integral equation method in three-dimensional electromagnetic modelling: Radio Science 37, 1089-2002. doi: 10.1029/2001RS002513   DOI   ScienceOn
21 Zhdanov, M. S., and Traynin, P., 1997, Migration versus inversion in electromagnetic imaging technique: Journal of Geomagnetism and Geoelectricity 49, 1415-1437   DOI   ScienceOn
22 Portniaguine, O., and Zhdanov, M. S., 1999, Focusing geophysical inversion images: Geophysics 64, 874-887. doi: 10.1190/1.1444596   DOI
23 Zhdanov, M. S., 2001, Method of broad band electromagnetic holographic imaging: US Patent # 6,253,100 B1