• Title/Summary/Keyword: inverse method

Search Result 2,367, Processing Time 0.03 seconds

Determination of Unknown Time-Dependent Heat Source in Inverse Problems under Nonlocal Boundary Conditions by Finite Integration Method

  • Areena Hazanee;Nifatamah Makaje
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.2
    • /
    • pp.353-369
    • /
    • 2024
  • In this study, we investigate the unknown time-dependent heat source function in inverse problems. We consider three general nonlocal conditions; two classical boundary conditions and one nonlocal over-determination, condition, these genereate six different cases. The finite integration method (FIM), based on numerical integration, has been adapted to solve PDEs, and we use it to discretize the spatial domain; we use backward differences for the time variable. Since the inverse problem is ill-posed with instability, we apply regularization to reduce the instability. We use the first-order Tikhonov's regularization together with the minimization process to solve the inverse source problem. Test examples in all six cases are presented in order to illustrate the accuracy and stability of the numerical solutions.

An Efficient Hardware Architecture of Intra Prediction and TQ/IQIT Module for H.264 Encoder

  • Suh, Ki-Bum;Park, Seong-Mo;Cho, Han-Jin
    • ETRI Journal
    • /
    • v.27 no.5
    • /
    • pp.511-524
    • /
    • 2005
  • In this paper, we propose a novel hardware architecture for an intra-prediction, integer transform, quantization, inverse integer transform, inverse quantization, and mode decision module for the macroblock engine of a new video coding standard, H.264. To reduce the cycle of intra prediction, transform/quantization, and inverse quantization/inverse transform of H.264, a reduction method for cycle overhead in the case of I16MB mode is proposed. This method can process one macroblock for 927 cycles for all cases of macroblock type by processing $4{\times}4$ Hadamard transform and quantization during $16{\times}16$ prediction. This module was designed using Verilog Hardware Description Language (HDL) and operates with a 54 MHz clock using the Hynix $0.35 {\mu}m$ TLM (triple layer metal) library.

  • PDF

A Study on the Inverse Shape Design of a Turbine Cascade Using the Permeable Boundary Condition and CFD (침투경계조건과 CFD를 이용한 터빈 역형상 설계에 관한 연구)

  • Lee, Eun-Seok;Seol, Woo-Seok
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3116-3121
    • /
    • 2007
  • In this paper, the inverse shape design is introduced using the permeable wall boundary condition. Inverse shape design defines the blade shape for the prescribed Mach numbers or pressure distribution on its surface. It calculates the normal mass flux from the difference between the calculated and prescribed pressure at the surface. A new geometry can be achieved after applying the quasi one-dimensional continuity equation from the leading edge to the trailing edge. For validation of this method, two test cases are studied. The first test case of inverse shape design illustrates the cosine bump with a strong shock. After seven geometry modifications, the shock-free bump geometry can be obtained. The second example concerns the redesign of a transonic turbine cascade. The initial isentropic Mach distribution has a peak on the upper surface. The target isentropic Mach number distribution was imposed smoothly. The peak of Mach distribution has disappeared at the final geometry. This proposed inverse design method has proven to be an efficient and robust tool in turbomachinery design fields.

  • PDF

An inverse dynamic trajectory planning for the end-point tracking control of a flexible manipulator

  • Kwon, Dong-Soo;Babcock, Scott-M.;Book, Wayne-J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.599-606
    • /
    • 1992
  • A manipulator system that needs significantly large workspace volume and high payload capacity has greater link flexibility than typical industrial robots and teleoperators. If link flexibility is significant, position control of the manipulator's end-effector exhibits the nonminimum phase, noncollocated, and flexible structure system control problems. This paper addresses inverse dynamic trajectory planning issues of a flexible manipulator. The inverse dynamic equation of a flexible manipulator was solved in the time domain. By dividing the inverse system equation into the causal part and the anticausal part, the inverse dynamic method calculates the feedforward torque and the trajectories of all state variables that do not excite structural vibrations for a given end-point trajectory. Through simulation and experiment with a single-Unk flexible manipulator, the effectiveness of the inverse dynamic method has been demonstrated.

  • PDF

Inverse Kinematics for Five-axis Machines Using Orthogonal Kinematics Chain (5축 밀링가공기의 직교 특성을 이용한 역기구학 방정식의 유도)

  • So, Bum-Sik;Jung, Yoong-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.2
    • /
    • pp.153-161
    • /
    • 2008
  • This paper proposes an efficient algorithm for deriving inverse kinematics equation of 5-axis machine. Because the joint order and direction of 5-axis machine are different for each type of machine, each type of machine needs its own inverse kinematics equation for post-processing of NC data. Also derived inverse kinematics equation may cause problems of indeterminate and inconsistent solution. In order to resolve these problems, we have developed a generic method to derive direct kinematics equation by considering orthogonal joints of 5-axis machines. Using this method, we also have proposed a general algorithm for deriving inverse kinematics equation for various types of 5-axis machines.

Dynamic Optimization Algorithm of Constrained Motion

  • Eun, Hee-Chang;Yang, Keun-Heok;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1072-1078
    • /
    • 2002
  • The constrained motion requires the determination of constraint force acting on unconstrained systems for satisfying given constraints. Most of the methods to decide the force depend on numerical approaches such that the Lagrange multiplier method, and the other methods need vector analysis or complicated intermediate process. In 1992, Udwadia and Kalaba presented the generalized inverse method to describe the constrained motion as well as to calculate the constraint force. The generalized inverse method has the advantages which do not require any linearization process for the control of nonlinear systems and can explicitly describe the motion of holonomically and/or nongolonomically constrained systems. In this paper, an explicit equation to describe the constrained motion is derived by minimizing the performance index, which is a function of constraint force vector, with respect to the constraint force. At this time, it is shown that the positive-definite weighting matrix in the performance index must be the inverse of mass matrix on the basis of the Gauss's principle and the derived differential equation coincides with the generalized inverse method. The effectiveness of this method is illustrated by means of two numerical applications.

New Calibration Methods with Asymmetric Data

  • Kim, Sung-Su
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.759-765
    • /
    • 2010
  • In this paper, two new inverse regression methods are introduced. One is a distance based method, and the other is a likelihood based method. While a model is fitted by minimizing the sum of squared prediction errors of y's and x's in the classical and inverse methods, respectively. In the new distance based method, we simultaneously minimize the sum of both squared prediction errors. In the likelihood based method, we propose an inverse regression with Arnold-Beaver Skew Normal(ABSN) error distribution. Using the cross validation method with an asymmetric real data set, two new and two existing methods are studied based on the relative prediction bias(RBP) criteria.

Comparison of Regularization Techniques for an Inverse Radiation Boundary Analysis (역복사경계해석을 위한 다양한 조정법 비교)

  • Kim, Ki-Wan;Shin, Byeong-Seon;Kil, Jeong-Ki;Yeo, Gwon-Koo;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.903-910
    • /
    • 2005
  • Inverse radiation problems are solved for estimating the boundary conditions such as temperature distribution and wall emissivity in axisymmetric absorbing, emitting and scattering medium, given the measured incident radiative heat fluxes. Various regularization methods, such as hybrid genetic algorithm, conjugate-gradient method and finite-difference Newton method, were adopted to solve the inverse problem, while discussing their features in terms of estimation accuracy and computational efficiency. Additionally, we propose a new combined approach that adopts the hybrid genetic algorithm as an initial value selector and uses the finite-difference Newton method as an optimization procedure.

Actuator Fault Estimation Method using Hexacopter Symmetry (Hexacopter의 대칭성을 이용한 구동기 고장 추정 방법)

  • Lee, Chan Hyeok;Park, Min Kee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.519-523
    • /
    • 2016
  • This paper proposes a method of estimating the actuator faults of a hexacopter without using encoders when one or more of six actuators do not operate normally. In the case of the hexacopter, a Pseudo-Inverse matrix is generally used to obtain the rotational speed of the actuators because the matrix that transforms the rotational speed of the actuators into the thrust and torque of the body coordinate system is not a square matrix. However, the method based on the Pseudo-Inverse matrix cannot detect the actuator faults correctly because the Pseudo-Inverse matrix is approximate. In the proposed method, the actuator faults are estimated by modifying the transform matrix using the property that the actuators of the hexacopter are symmetrical. The simulation results show the effectiveness of the proposed method when faults occur in one or more of the six actuators.

An inverse determination method for strain rate and temperature dependent constitutive model of elastoplastic materials

  • Li, Xin;Zhang, Chao;Wu, Zhangming
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.539-551
    • /
    • 2021
  • With the continuous increase of computational capacity, more and more complex nonlinear elastoplastic constitutive models were developed to study the mechanical behavior of elastoplastic materials. These constitutive models generally contain a large amount of physical and phenomenological parameters, which often require a large amount of computational costs to determine. In this paper, an inverse parameter determination method is proposed to identify the constitutive parameters of elastoplastic materials, with the consideration of both strain rate effect and temperature effect. To carry out an efficient design, a hybrid optimization algorithm that combines the genetic algorithm and the Nelder-Mead simplex algorithm is proposed and developed. The proposed inverse method was employed to determine the parameters for an elasto-viscoplastic constitutive model and Johnson-cook model, which demonstrates the capability of this method in considering strain rate and temperature effect, simultaneously. This hybrid optimization algorithm shows a better accuracy and efficiency than using a single algorithm. Finally, the predictability analysis using partial experimental data is completed to further demonstrate the feasibility of the proposed method.