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Abstract

In this paper, two new inverse regression methods are introduced. One is a distance based method, and the

other is a likelihood based method. While a model is fitted by minimizing the sum of squared prediction

errors of y’s and x’s in the classical and inverse methods, respectively. In the new distance based method,

we simultaneously minimize the sum of both squared prediction errors. In the likelihood based method, we

propose an inverse regression with Arnold-Beaver Skew Normal(ABSN) error distribution. Using the cross

validation method with an asymmetric real data set, two new and two existing methods are studied based

on the relative prediction bias(RBP) criteria.

Keywords: Arnold-Beaver skew normal distribution, asymmetric data, inverse regression, calibration,

relative prediction bias.

1. Introduction

Suppose one collects n paired observations on (x, y), where each y is observed for a fixed x. Let this

stage be called the first phase. Later, suppose one observes one or more values of y’s for a same

value of x, but the value of the x is unknown. We call this stage the second phase. For example, n

breaking distances of a car (y) are measured for pre-assigned driving speeds (x). This is the first

phase. Later, suppose that a breaking distance of the car is observed but the corresponding driving

speed is not recorded. This is the second phase. A calibration or inverse regression refers to making

inferences about the corresponding value of driving speed (x) using one or more, say m, breaking

distances (y’s). In mathematical notation, the model is stated as

yi = a+ bxi + ϵi, i = 1, . . . , n,

yj = a+ bx̃+ ϵj , j = 1, . . . ,m, (1.1)

where a and b are slope and intercept parameters, respectively, ϵ has zero mean, n and m represent

the number of pairs collected in the first phase and the number of y’s observed in the second phase,

respectively. x̃ denotes the unknown value of x to be predicted, using m observed y’s in the second

phase.

For the calibration problem, the classical method is introduced in Krutchkoff (1967). In this method,

a and b are estimated by minimizing the sum of squared prediction errors of y’s. That is, the
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objective function to be minimized is shown below.

n∑
i=1

(yi − a− bxi)
2. (1.2)

After solving the fitted equation for x, x̃ is predicted as

ˆ̃x = − b̂

â
+

ȳ

b̂
, (1.3)

where â and b̂ are the least square estimators(LSE) of a and b, and ȳ is the sample mean of m y’s

from the second phase.

As a competitor of the classical method, Klutchkoff (1967) propose the inverse method, where the

model is fitted by minimizing the sum of squared prediction errors of x’s. So, the objective function

to be minimized is given by

n∑
i=1

(xi − c− dyi)
2, (1.4)

where c and d are re-parameterizations of −a/b and 1/b, respectively. Using the fitted equation, we

predict x̃ as

ˆ̃x = ĉ+ d̂ȳ, (1.5)

where ĉ and d̂ are the LSEs of c and d, and ȳ is the same as above.

These two methods are discussed in Krutchkoff (1967, 1969), Martinelle (1970), Halperin (1970),

Minder and Whitney (1975), Brown (1979), and Chow and Shao (1990). Krutchkoff (1967) con-

cludes that, in the range of x’s, the inverse method performs better than the classical method based

on the mean squared error criteria. Krutchkoff (1969) adds to his findings that there are situations

where the classical method is better in extrapolation (Krutchkoff, 1969). Martinelle (1970) evalu-

ates Krutchkoff’s conclusion theoretically and claims that it is true only for small samples and using

more than one observed y’s can reduce the advantage of the inverse method. In Halperin (1970),

it is discussed that the classical method is preferred based on Pitman’s (1937) closeness. Minder

and Whitney (1975) and Brown (1979) use a likelihood analysis and integrated mean square error,

respectively to conclude that both methods are closely optimal. Chow and Shao (1990) studied the

probability that the ratio of the two estimates differs from the unity, and found that the probability

increases as the ratio of the standard deviation of errors to the regression slope decreases.

Two new methods, distance based and likelihood based, of calibration are introduced in this paper.

In a distance based method, distances between raw data and fitted values are utilized to find the

estimates as done in the classical and the inverse methods. On the other hand, we use the likelihood

of data to fit a model in the likelihood-based method. Motivation for developing the distance-based

method is from the concept that the data set can be used for predicting both y and x. It is shown

that the method is equivalent to using the perpendicular distances from each data point to a fitted

line. A likelihood-based method is introduced in order to model an asymmetrically distributed

y’s. This method is motivated by the fact that many distributions encountered in practice are

usually asymmetric. In this method, we assume that errors in (1.1) follow the Arnold-Beaver Skew

Normal(ABSN) distribution. Using the cross validation technique applied to a skewed real data set,

two new and two existing methods are compared based on the relative prediction bias criteria(RPB)

and the relative absolute prediction error(RAPE).
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2. Methods

2.1. A new distance based inverse regression

Having the inverse regression problem, it is noted that the data set from the first phase is used for

the dual purposes: prediction of y given x and prediction of x given y. This motivates an attempt to

estimate a and b by simultaneously minimizing both sums of prediction errors used in the classical

and the inverse methods. Consequently, the objective function to be minimized with respect to a

and b is given by

n∑
i=1

(yi − a− bxi)
2 +

n∑
i=1

(
xi −

yi − a

b

)2
. (2.1)

After taking derivative of (2.1) with respect to a and setting it to zero, one can easily verify that

the estimator of a is given by ȳ − b̂x̄. In order to get b̂, first substitute ȳ − bx̄ for a in (2.1), then

write it in a vector form by stacking n observations:

(y − ȳ − b(x− x̄))′(y − ȳ − b(x− x̄)) +

(
x− x̄− 1

b
(y − ȳ)

)′(
x− x̄− 1

b
(y − ȳ)

)
, (2.2)

where

y =


y1
...

yn

 , x =


x1

...

xn

 , ȳ = ȳ


1
...

1

 , x̄ = x̄


1
...

1

 ,

ȳ =
1

n

n∑
i=1

yi, x̄ =
1

n

n∑
i=1

xi.

After substituting

X̄ = x− x̄, Ȳ = y − ȳ,

it follows that (
1 +

1

b2

)
(Ȳ − bX̄)′(Ȳ − bX̄). (2.3)

Differentiating (2.3) with respect to b and setting it equal to zero yields the quartic equation shown

below. (
X̄ ′X̄

)
b̂4 −

(
X̄ ′Ȳ

)
b̂3 +

(
X̄ ′Ȳ

)
b̂−

(
Ȳ ′Ȳ

)
= 0. (2.4)

A quartic equation solver can be found in the web; for example, one is found at http://www.1728.com/

quartic.htm. After getting b̂ and then â, x̃ is predicted as

ˆ̃x = − â

b̂
+

ȳ

b̂
. (2.5)

where â and b̂ are the LSEs of a and b. It is well known that the least squared estimators, â and b̂,

are asymptotic normally distributed.

The new method can be viewed as minimizing the sum of squared vertical and horizontal distances
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Figure 2.1. Graphical illustration of the new method.

from each data point to a fitted line. In the following, we show that minimizing the sum of squared

distances is equivalent to minimizing the sum of the associated squared perpendicular distances.

This is graphically illustrated in Figure 2.1. One can find five similar triangles in the figure.

Examining two similar triangles denoted as AiBiCi and DiOiAi, it is found that AiBi, AiCi and

BiCi are similar sides to DiOi, DiAi and OiAi, respectively. Let Ai be a data point. Then,

AiBi and AiCi represent vertical and horizontal distances from Ai to a fitted line, respectively,

and AiOi is the associated perpendicular distance. In the following, it is shown that the sum of

squared horizontal and vertical distances is a constant multiple of the sum of squared perpendicular

distances.

n∑
i=1

(
(AiBi)

2 + (AiCi)
2) = n∑

i=1

(AiBi)
2

(
1 +

(AiCi)
2

(AiBi)2

)
=

n∑
i=1

(AiBi)
2

(
1 +

(DiAi)
2

(DiOi)2

)

=

n∑
i=1

(
AiBi

DiOi

)2 (
(DiOi)

2 + (DiAi)
2) = c2

n∑
i=1

(AiOi) , (2.6)

where the last equal sign is due to (AiBi)/(DiOi) = c, for i = 1, . . . , n, and c is some positive

constant.

In the following sections, the method proposed in this section will be denoted as ‘New’ method.

2.2. Inverse regression with ABSN errors

Many distributions encountered in practice are usually asymmetric. This motivates us to develop

a new calibration method with a skewed error distribution. The model is given by

yi = a+ bxi + ϵi, (2.7)

where a and b are slope and intercept parameters, respectively, and ϵi’s follow the ABSN distribu-

tion. The density of ϵi’s is given by

fϵi(ϵi|λ0, λ1) =

exp

(
− ϵ2i

2

)
Φ(λ0 + λ1ϵi)

√
2πΦ

(
λ0√
1 + λ2

1

) , i = 1, . . . , n, (2.8)
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where λ0 and λ1 are skewness parameters. ABSN distribution can model symmetric or asymmetric

and unimodal or multimodal data (Arnold and Beaver, 2000). It is noted that it becomes the

standard normal distribution when λ0 and λ1 are both equal to 0.

Having the above model, although location parameter is zero in (2.8), it is not centered at 0.

Therefore, we find that the errors have non-zero conditional mean, which is equal to the bias given

by

E (ϵi|xi) =
λ1√
1 + λ2

1

Λ

(
λ0√
1 + λ2

1

)
, i = 1, . . . , n, (2.9)

where Λ(·) represents ϕ(·)/Φ(·), the inverse Mill’s ratio. Bias can be removed from the model

by subtracting and adding the value of bias so that new errors can have a 0 conditional mean.

Consequently, â is estimated with the added bias, and a correct value of â is given by the estimate

of a minus the estimate of bias (Kim, 2009).

We use the maximum likelihood method to find the estimators since they possess a number of

attractive asymptotic properties. The MLEs of a, b, λ0 and λ1 are solutions to the first order

equations of the log likelihood function shown below with respect to a, b, λ0 and λ1.

n∑
i=1

log
exp

(
− (yi − a− bxi)

2

2

)
Φ(λ0 + λ1(yi − a− bxi))

√
2πΦ

(
λ0√
1 + λ2

1

)
 . (2.10)

After getting â and b̂, ˆ̃x is obtained as

ˆ̃x = − â

b̂
+

ȳ

b̂
, (2.11)

where â and b̂ are the MLEs of a and b. One may obtain these MLEs through a numerical compu-

tation. It is noted that computations of the works in this paper are easily facilitated using R. Since

the ABSN density satisfies the regularity conditions, â and b̂ are asymptotically normal with the

asymptotic variance equal to the diagonal elements of the inverse of the information matrix. In the

remaining sections, the method proposed in this section is labeled as ‘ABSN’ method.

2.3. Comparison of the methods

In this section, two existing and two new methods are compared based on the relative prediction

bias(RPB) criteria. RPB for x̃ is given by E((ˆ̃x− x̃)/x̃). RPB measures the balanced amount by

which each estimator over and underestimates so that smaller the RPB is more is that it will be

correct on the average. As one of the referees suggested, one may also consider E|(ˆ̃x− x̃)/x̃| in
comparing the methods, which may be called the relative absolute prediction error(RAPE). When

using the cross validation method, the overall estimated relative prediction bias(OERPB) and the

overall relative absolute prediction bias(OERAPE) are given by

1

n

n∑
i=1

x̂(i) − xi

xi
and

1

n

n∑
i=1

∣∣∣∣ x̂(i) − xi

xi

∣∣∣∣ ,
respectively, where x̂(i) is obtained using the data set with xi omitted.

Data set, which is found in the R data base, consists of 66 plasma concentrations of Indomethicin
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Table 2.1. OERPB using the 66 plasma concentrations data set.

Methods

Classical Inverse New ABSN

OERPB −1.82 1.81 −1.63 −1.00

Plasma concentrations of indomethicin (mcg/ml)
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Figure 2.2. Density plot of 66 plasma concentrations of Indomethicin.

(mcg/ml) for different times (hr) at which blood samples were drawn. A smoothed density plot of

the 66 plasma concentrations is displayed in Figure 2.2. It shows that the data set is clearly skewed

to the right. In Table 2.1, the OERPBs of the existing methods and new methods are presented.

3. Discussion

In this paper, two new methods in calibration were proposed. It was shown that the methods are

easy to be estimated and implemented using R. For the asymmetric data set containing 66 blood

samples and plasma concentrations, it is found that two new methods performed well for the data

set, of which the ABSN method yielded the smallest OERPB as −1.00. Therefore, it is suggested

that, for an asymmetrically distributed data set, two new methods are preferred to two existing

methods based on the RPB criterion.
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