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In this paper, we propose a novel hardware architecture 
for an intra-prediction, integer transform, quantization, 
inverse integer transform, inverse quantization, and mode 
decision module for the macroblock engine of a new video 
coding standard, H.264. To reduce the cycle of intra 
prediction, transform/quantization, and inverse quanti-
zation/inverse transform of H.264, a reduction method for 
cycle overhead in the case of I16MB mode is proposed. 
This method can process one macroblock for 927 cycles for 
all cases of macroblock type by processing 4×4 Hadamard 
transform and quantization during 16×16 prediction. This 
module was designed using Verilog Hardware Description 
Language (HDL) and operates with a 54 MHz clock using 
the Hynix 0.35 µm TLM (triple layer metal) library. 
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I. Introduction 

Nowadays, H.264 is drawing considerable attention because 
it can encode video with approximately three times fewer bits 
than the comparable MPEG-2 algorithm. It also offers several 
features such as squeezing more television programs into a 
given channel bandwidth, delivering quality video over 
bandwidth-constrained networks (for example, 3G mobile), 
and fitting a high-definition movie feature onto a standard 
DVD [1]. 

The major features of H.264 compared with MPEG-4 
(ISO/IEC 14496-2) are as follows: H.264 contains improved 
inter-prediction and motion compensator techniques, improved 
intra spatial prediction, integer transform, a deblocking filter, a 
context adaptive entropy coding method, and so on.  

If a block or macroblock is encoded in intra mode, a 
prediction block is formed based on previously encoded and 
reconstructed (but un-filtered) blocks. This prediction block P 
is subtracted from the current block prior to encoding. For the 
luminance (luma) samples, P may be formed for each 4×4 sub-
block or for a 16×16 macroblock. There are a total of nine 
optional prediction modes for each 4×4 luma block; four 
optional modes for a 16×16 luma block; and four modes for a 
4×4 chroma intra block.  

If a macroblock is in p-slice or b-slice, the rd_cost (distortion 
+ λ•rate) value of motion estimation is compared with the 
smallest rd_cost value among the intra prediction (16×16 luma 
prediction/4×4 luma prediction). The mode decision of a 
macroblock is determined by selecting the mode of the 
smallest rd_cost value among the probable modes.  

For the H.264 encoder, after the mode decision of a 
macroblock, each residual macroblock is quantized and 
transformed. Whereas previous standards such as MPEG-1, 
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MPEG-2, MPEG-4, and H.263 made use of the 8 × 8 discrete 
cosine transform (DCT) as the basic transform, H.264 uses 
three transforms depending on the type of residual data that is 
coded in the bitstream: a transform for the 4×4 array of luma 
DC coefficients in intra macroblocks (predicted in 16×16 
mode), a transform for the 2×2 array of chroma DC 
coefficients (in any macroblock), and a transform for all other 
4×4 blocks in the residual data.  

Therefore, for the implementation of transform and 
quantization (TQ) and inverse quantization and inverse 
transform (IQIT), the control flow is dependent on the 
macroblock type and is more complex than the previous 
standards such as MPEG-1, MPEG-2, and MPEG-4 [2], [3].  

Several researchers have been published on H.264 encoder 
hardware architecture. The contributions related to the motion 
estimator [4]-[7] and transformation [8], [9] are note worthy.  
For the hardware implementation of intra-prediction and 
transformation, the contribution of Chen and colleagues [10], 
[11] is a good solution for a D1 resolution intra frame coder. 
Here, they have used approximately 1280 cycles for one 
macroblock for the D1 resolution intra frame encoder. Using 
the DCT distortion measure, reconfigurable processor element 
(PE), and interleaved I4MB/I16MB prediction scheduling, 
they can reduce the gate count.  Another paper by Chen and 
colleagues [12] on the H.264 level 3 inter-prediction encoder is 
an excellent contribution, but much of the intra prediction and 
transformation is not revealed.  

In this paper, we propose an intra prediction hardware 
architecture and TQ/IQIT module architecture in an H.264 
encoder that can process one macroblock for 927 cycles. We 
explain the operation of intra prediction and the TQ/IQIT 
module, and a reduction method for cycle overhead in the case 
of the I16MB mode in section II. The proposed architecture of 
intra prediction and the TQ/IQIT module are discussed in 
section III. Finally, experimental results and conclusions drawn 
are presented in sections IV and V, respectively.  

II. Intra Prediction, TQ/IQIT Module Operation and 
the Cycle Overhead for I16 MB Mode 

1. 4 × 4 Intra Prediction 

The data dependency of 4×4 intra prediction mode is 
shown in Fig. 1. The pixels from a to p are predicted from A-
L and M. Pixels labeled in upper case are reconstructed pixels. 
Because there are 16 4×4 blocks in a macroblock, the 
predictor cannot get the reconstructed pixels when previous 
blocks are not coded. JM [13] uses a two-pass algorithm to 
code these blocks. It requires all the blocks passing the 
transform, quantization, dequantization, and inverse 

transformation loop to do a 4×4 intra prediction, which is too 
complex for the hardware implementation. For this reason, 
Chen and others [14] proposed a modified algorithm, where 
original frame pixels instead of reconstructed pixels are used 
as predictors, and devised an error term to compensate for the 
estimation inaccuracy. But this modification results in quality 
degradation for the sequence, which needs many intra MBs. 
Therefore, we prefer the JM algorithm for hardware 
implementation. In our proposed architecture, intra prediction 
and the TQ/IQIT module are fully compatible with JM 8.5 
software.  
 

 

Fig. 1. 4×4 intra prediction. 
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2. 16 × 16 Intra Prediction 

As an alternative to the 4×4 intra prediction mode, the entire 
16×16 intra prediction component of a macroblock may be 
predicted in one operation. Figure 2 shows the data 
dependency of 16×16 intra prediction. The current macroblock 
is predicted by the 17 pixels from upper macroblocks and 16 
pixels from the left macroblock. The 16×16 intra prediction has 
 

 

Fig. 2. Data dependency of 16 × 16 intra prediction.
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Fig. 3. 16 × 16 intra prediction in four modes. 
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four modes that are calculated for a 16×16 block and is shown 
in Fig. 3. 

3. 8 × 8 Intra Prediction 

Each 8×8 intra prediction component is predicted from 
previously encoded chroma samples above and/or to the left, 
and both Cb, Cr components always use the same prediction 
mode. The four prediction modes for 8×8 prediction are very 
similar to the 16×16 intra prediction modes. As the prediction 
mode decision method for 8×8 intra prediction is similar to 
the16×16 prediction mode, a 16×16 intra prediction module is 
used for 8×8 intra prediction for our implementation. 

4. TQ/IQIT Operation and Cycle Overhead for I16MB Mode 

Data within a macroblock are transmitted in the order shown 
 

 

Fig. 4. Scanning order of residual blocks within a macroblock.
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in Fig. 4. If the macroblock is coded in 16×16 intra mode 
(I16MB), then the block labeled “-1” is transmitted first, 
containing the DC coefficients of each 4×4 luma block. Next, 
the luma residual blocks 0 to 15 are transmitted in the order 
shown (with the DC coefficients set to zeros in a 16×16 intra 
macroblock). Blocks 16 and 17 contain a 2×2 array of DC 
coefficients from the Cb and Cr chroma components, 
respectively. Finally, chroma residual blocks 18 to 25 (with 
zero DC coefficients) are sent. If the macroblock is not coded 
in 16×16 intra mode, then the block labeled “-1” is not 
transmitted, and the luma residual blocks 0 to 15 are 
transmitted in the order shown (with the DC coefficients). The 
chroma coefficients are sent with the same methodology as in 
16×16 intra mode. 

Figure 5 shows the timing cycle when intra 16×16 mode is 
selected. This is our first version for the macroblock processing 
cycle. The operation cycle of IQIT can start after 769 cycles, and 
the total number of cycles for the I16MB processing is 1105. 
Each cycle as given in Fig. 5 is explained in the section III. 

When in intra 16×16 mode, the transformation method uses 
both 4×4 integer DCT and a Hadamard transform. To code a 
macroblock in I16MB mode, 16 blocks have to be 4×4 integer 
DCT transformed and quantized, and the DC values obtained 
from a 4×4 integer DCT have to be Hadamard transformed and 
quantized. Since the DC coefficients of DCT-transformed data 
can be obtained after a DCT operation of 16 blocks, IQIT 
operation can start after completion of the Hadamard transform 
and quantization of DC coefficients (start of IQIT@I16MB). 
This fact makes the 178-cycle overhead for I16MB mode 
compared with non-I16MB mode. For the encoding cycle of 
non-I16MB mode (I4MB, INTER), the operation of IQIT can  

 
 

Fig. 5. The cycle overhead for I16MB mode. 
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start at the point “start of IQIT @non-I16MB.” To reduce the 
cycle overhead in I16MB mode, we have to move the starting 
point of IQIT to “start of IQIT @non-I16MB.” If we can 
predict the quantized value of Hadamard transformed DC 
coefficients, we can reduce the cycle overhead for I16MB 
mode. 

 The distortion calculation method for 16×16 prediction uses 
the same method to code an I16MB macroblock, but while 
calculating the distortion, the distortion measure is the sum of 
absolute error (SAE) value of 2D-Hadamard transformed 
results of the prediction error (the difference between coded 
pixel and predicted pel).  

Here, we will verify that DC values of the 2D-Hadamard 
transform and integer 2D-discrete cosine transform are 
basically the same. From this fact, we will confirm that a 
Hadamard DC coefficient can be predicted in the 16×16 intra 
prediction process. During the 16×16 intra prediction process, 
the value of a DC coefficient can be obtained by modifying the 
intra prediction module. 

A. 4×4 Residual Luma and Chroma Forward Integer 
Transform 

In H.264, a 4×4 forward DCT transform is modified [8] as 
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From (1), we can obtain the DC value Y00 as shown in (2): 
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B. Hadamard Transform  

The 4×4 luma DC coefficients of a 16×16 block are grouped 
into a 4×4 block and further transformed, for intra frames, to 
improve compression.  

The input matrix X is formed by picking out DC coefficients 
from the 16 transformed 4 × 4 blocks. DC coefficients are then 
transformed using a symmetric Hadamard transform in the 
form 
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(3) 

From (3), the DC value Y00 of a 2D-Hadamard transform can 
be obtained as  
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From this, it is clear that the DC values of a Hadamard 
transform and integer DCT are basically the same. As we use 
the Hadamard distortion measure for the intra prediction 
process, the DC value of 16 block integer DCT can be obtained 
during the distortion calculating process.  

As the DC values obtained from the Hadamard transform 
and 4×4 integer transform are basically the same, we can 
obtain the quantized DC coefficients by collecting the DC 
values of the selected I16MB mode among the vertical, 
horizontal, DC, and plane modes, and by applying a Hadamard 
transform followed by a quantization step. Therefore, we 
propose a hardware architecture for the 16×16 prediction 
module and quantization module, which can obtain quantized 
DC coefficients. This is discussed in section III. The start of an 
IQIT operation in the case of I16MB is performed at the point 
“start of IQIT @non-I16MB .” 

5. Processing of Inter Macroblock and Coded Block Pattern 
Consideration 

For the 4×4 intra prediction mode or inter prediction mode, a 
Hadamard transform of the luma component is not required. 
Here, the operation of IQIT can start after the completion cycle 
of the first 4×4 block TQ. But in the inter prediction mode, the 
coeff_cost value, which is used for coded block pattern (CBP) 
calculation, has to be considered. The CBP processing method, 
considering the coefficient cost, is incorporated into JM to 
improve coding efficiency for inter prediction and chroma 
components. 
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0 if _ 5.luma allCbp Coeff C= ≤           (8) 
 

Equations (5) and (6) indicate that when the quantized 
coefficients (level) of four 4×4 blocks are -1, 0, 1, and the 
summation of coeff_cost  is less than 4, this 8×8 block is not 
coded in the bitstream. In this case, the reconstructed data for 
the 8×8 block is the prediction data. This means that the IDCT 
value of the 8×8 block has to be processed to all zeros. 
Equations (7) and (8) indicate that when the conditional sum of 
coefficient costs for four 8×8 blocks is less than 5, all of the 
luma components are not coded in the bitstream. For this 
reason, if we start an operation of IQIT at the “start of 
IQIT@non-I16MB”, we cannot obtain a correct reconstructed 
frame. But in the real architecture, we start the IQ operation at 
the “start of IQIT@non-I16MB”, and use the temporal storage 
memory ‘IDCT value SRAM’ to store the IDCT results. After 
determination of the CBP, the selected value from the IDCT 
value and 0s according to the CBP will be fed into the 
summation logic. Hence, there is no cycle overhead in inter 
macroblock.  

III. Proposed Hardware Architecture 

Figure 6 shows the hardware architecture of intra prediction, 
TQ/IQIT, and mode decision blocks. As the intra prediction 
module intrinsically uses neighboring pixels to predict the 
 

value of the current pixel, the neighboring pixels have to be 
stored. This pixel is stored in intra prediction SRAM as shown 
in Fig. 6. After the mode decision of the macroblock, this pixel 
is updated using the summated data of the IDCT value and 
prediction data for the chosen mode. These values can be 
determined only after one macroblock processing. But in the 
case of 4×4 intra prediction, the neighboring pixels for a 4×4 
block depend on the block number position as shown in Fig. 4. 
To get the left neighboring pixels of block number 1, block 0 
has to be processed using the subtraction operation, TQ/IQIT, 
and summation operation. Thus, before the determination of 
the macroblock mode, a TQ/IQIT operation has to be 
performed. That is, for the 4×4 block prediction mode, because 
there are sixteen 4×4 blocks in a macroblock, the predictor 
can’t obtain the reconstructed pixels (unfiltered) when the 
previous blocks are not coded. Therefore, the TQ/IQIT 
operation is required for calculating the distortion (rd_cost) 
values of intra 4×4 prediction. Thus, we devised the intra 
prediction flip-flops to store the prediction data for 4×4 blocks. 
During the 4×4 prediction, neighboring pixels for each 4×4 
block have to be updated in the prediction flip-flops. That is, 
intra prediction flip-flops are updated with summation data of 
the IDCT value and prediction value during the 4×4 prediction 
mode, whereas intra prediction RAM is updated after the 
decision of macroblock type. 

As mentioned before, the 16×16 prediction and 8×8  
 

 

Fig. 6. Intra prediction and TQ/IQIT block diagram. 
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Fig. 7. Intra prediction RAM memory. 
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prediction use a similar method for prediction; therefore, we 
use a design for the 16×16 prediction module that can also be 
used for the 8×8 prediction module.   

The neighboring pixel values for each macroblock in the 
prediction RAM are transferred to the prediction flip-flops 
before the start of intra-prediction for each macroblock.  

In Fig. 6, the TQ/IQIT module is shown twice. One is for 
4×4 prediction timing and the other is for timing after the 
macroblock mode decision. But in a real application, only one 
TQ/IQIT module is implemented because the operation timing 
of two TQ/ IQITs is different.  

The memory architecture of intra prediction RAM is shown 
in Fig. 7. The prediction RAM is separated into horizontal and 
vertical parts. Each part represents the neighboring pixel of the 
macroblock boundary. Because the application of our encoder 
is for D1 resolution, we use 32 bit × 180 (720 pixel) horizontal 
SRAM for both luminance data and chrominance data. As 16 
vertical prediction data are needed for luminance data, we use a 
vertical prediction 128-bit flip-flops for the vertical part. For the 
chrominance data, eight pixels are required for vertical 
prediction data of both Cb and Cr.  

First, the intra 4×4 prediction mode is dealt here. Using the 
reconstructed pixel value of the intra prediction flip-flops, the 
4×4 prediction pel calculation module computes the 
prediction values of each mode. Using the current pixel and 
the prediction values, the 4×4 SAE calculation module 
outputs the SAE values of 9 modes. By comparing the 
rd_cost (SAE+λ•rate) value of 9 modes, 4×4 mode selection 
logic selects the best mode with the minimum rd_cost and 
outputs the prediction values to be fed into the 4×4 prediction 
SRAM and TQ. By using the same method, 16×16 and 8×8 
intra prediction outputs each selected values after choosing the 
best mode. 

Each prediction value of the best mode selected by 16×16 
and 4×4 mode selection logic are stored in 16×16 and 4×4 
prediction SRAMs, each having a size of 256 bytes. The 
prediction values of the best mode selected in the case of 8×8 
prediction are stored in 8×8 prediction SRAM, which is 128 
bytes in size. Meanwhile, the prediction values of the best 

mode selected by the inter prediction module have to be 
stored in inter prediction SRAM, which is 384 bytes in size. 
The rd_cost value of inter prediction, which is calculated by 
the motion estimation module, is transferred to this module 
using AMBA (Advanced Microcontroller Bus Architecture) 
bus. 

The best mode selection logic chooses the best mode among 
the 4×4 intra prediction, 16×16 intra prediction, and inter 
prediction with the best rd_cost calculated by each mode 
selection logic.  

Using the selected mode from the best mode selection logic, 
MUX2 selects the stored values in 16×16, 4×4, and 8×8 inter 
prediction SRAM and transfers the values to the subtraction 
logic.  

Output values of MUX2 have to be subtracted from the 
current value, and its subtracted values are transferred to the 
TQ module. After the IQIT operation is complete for each 
DPCMed value, the addition of the output values of IQIT and 
the predicted values in selected prediction SRAM is done, 
and its added values are stored in intra prediction RAM and a 
384-byte sized buffer of the loop filter. The IDCT value 
SRAM has a size of 256 × 16 bits and is used for storing 
IDCT results for luma components for the inter prediction 
macroblock. For the inter prediction macroblock, the 
coefficient cost value has to be considered for the 
reconstruction of a macroblock. Until the TQ operation for 16 
blocks is completed, the cbp (coded block pattern) value will 
not be determined. But in our architecture, because the IQIT 
operation starts after the first TQ cycle in order to reduce the 
cycle of one macroblock cycle, the reconstruction of a pixel 
will be mismatched. So, IDCT values are stored in the RAM 
and are used for summation after the 16 blocks’ TQ operation 
considering the cbpluma value. 

1. Intra Prediction Flip-Flop Architecture 

For intra prediction processing for one macroblock, 37 
neighboring pixels are required for the luminance component 
and 34 neighboring pixels are required for the chrominance 
components. Figure 8 shows the required pixels for the 
luminance component. For the horizontal direction, 21 
neighboring pixels are required because the intra 4×4 
prediction needs an M value and 16 pixels in the upper side 
and 4 pixels on the right upper side. For the upper side of the 
chroma components, nine upper neighboring pixels are 
required for each component. For the vertical direction, 16 left 
neighboring pixels are needed for the luma components, and 
eight left neighboring pixels are needed for Cb and Cr, 
respectively.  

Thus, we map these neighboring pixels into intra prediction  
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flip-flops. These flip-flops have to be read from the intra 
prediction SRAM before the start of a macroblock and are 
updated during the operation of 4×4 intra prediction. The intra 
4×4 prediction block executes a prediction operation after 
reading eight pixel values in the horizontal part and four pixel 
values in the vertical part, corresponding to the position of the 
current block. 

In the case of 4×4 intra prediction, the result of adding IDCT 
and prediction values has to be stored in the intra prediction 
flip-flops for the prediction of the neighboring pixel of the next 
block. 

In the case of the vertical neighboring pixel, the 3rd, 7th, 
11th, and 15th pixel data of one block are stored in the 
vertical prediction flip-flops, and for the horizontal 
neighboring pixel, the 12th, 13th, 14th, and 15th pixel data 
are stored in the horizontal prediction flip-flops. These stored 
pixel values in the flip-flops are used for the prediction of the 
next block. Figure 9 shows the M flip-flops. The M flip-flops 
indicate the upper-left pixels which are only used for 4×4 
intra prediction.  

In Fig. 9, the M value of block 1 exists as D in the horizontal 
prediction flip-flop while block 0 is processing. But, after 
updating the flip-flop of position D with the value of the 15th 
pixel of block 0, the D pixel data value no longer exists 

because of overwriting. 
Here, before updating the flip-flop of position D with the 

15th pixel, the value of D is transferred to the M flip-flop with 
index 0. Because there are 16 blocks in macroblock luminance 
components, 16 storage positions are needed. 

Table 1 shows the read index of M for each block. When 
block 1 is processing, the M value of block 1 is read from the 
M flip-flop with index 0. From Fig. 9, we can see that the M 
value of block 1 is the D value of block 0. 

By introducing the intra prediction flip-flops and M flip-flops, 
the 4×4 prediction process can be done without memory access. 
Therefore, we can access the neighboring pixel at any time to 
generate the predicted pels for 9 modes. Since the neighboring 
pixel finding method for JM is different from our method, we 
modified the neighboring pixel finding method described 
above in our reference software and confirmed the correctness 
of our method. 
 

Table 1. Read index of M for each block.  

Block 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Index 
of M

5 0 7 2 1 4 3 6 13 8 15 10 9 12 11 14

 

 
2. 4×4 Intra Prediction Hardware Architecture 

The 4×4 intra prediction module consists of the prediction 
pel calculation module, 4×4 SAE calculation module, and 4×4 
mode selection logic, as shown in Fig. 10. 

Using the pixels read from the intra prediction flip-flops, the 
prediction pel calculation module generates 36 pixel values 
simultaneously for 9 mode. In the 4×4 SAE calculation module, 
the differences of the current pixel and prediction pel value are 
computed, and their computed differences are Hadamard- 
transformed. 

This module computes the SAE value by addition of the 
absolute value of the transformed difference. Table 2 shows the 
computed SAE calculation time cycle using the 2D-Hadamard 
transform. The SAE calculation time takes eleven cycles 
because of the parallel processing of 4 pixel data. The 4×4 
mode selection logic finds the best mode with the smallest 
rd_cost among the 9 mode. The rd_cost is calculated by 
addition of the calculated value of 4×4 SAE and the value in 
proportion to the amount of bits to be generated for the syntax 
element in intra 4×4 pred_mode.  

Figure 11 shows the 4×4 intra prediction processing cycle of 
a 4×4 block. As shown in Fig., 1 the cycle is required to read 
the pixel from the luma current RAM and to calculate the  
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Fig. 10. 4 × 4 intra prediction hardware module. 
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Table 2. Hadamard distortion calculation time. 

Count Address Hadamard input Transpose register file Hadamard output Org-pred TQ IQIT 
1 (0, 1, 2, 3)       
2 (4, 5, 6, 7) (0, 1, 2, 3)      
3 (8, 9, 10, 11) (4, 5, 6, 7) (0, 1, 2, 3)     
4 (12, 13, 14, 15) (8, 9, 10, 11) (4, 5, 6, 7)     
5  (12, 13, 14, 15) (8, 9, 10, 11)     
6   (12, 13, 14, 15)     
7  (0, 4, 8, 12)      
8  (1, 5, 9, 13)  (0, 4, 8, 12)    
9  (2, 6, 10, 14)  (1, 5, 9, 13)    
10  (3, 7, 11, 15)  (2, 6, 10, 14)    
11    (3, 7, 11, 15)    
12    Cal_rdcost 4×4    
13    Mode_sel    
14    (0, 1, 2, 3)   
15    (4, 5, 6, 7)  
16    (8, 9, 10, 11)  
17    

Prediction 4×4 
SRAM write 

(12, 13, 14, 15)  
18       
19       
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prediction value of each mode. 
The SAE value that has been Hadamard transformed takes 

eleven cycles. The selection of the best mode takes one cycle.  
 

 

Fig. 11. Intra 4 × 4 prediction hardware cycles. 
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Fig. 12. Intra 16×16 prediction hardware cycles. 
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Also, it takes one cycle to compute the difference of the current 
values and prediction value. Thirteen cycles are required for the 
transformation and quantization cycle. For the inverse 
quantization and inverse transform case, thirteen cycles are 
needed. We will explain each case in sub-sections. 

So, since 34 cycles are needed for 4×4 intra prediction, and 
as one macroblock has sixteen blocks, the total prediction takes 
544 cycles. Since the prediction flip-flops have to be updated 
before the start of intra 4×4 prediction, five cycles are required 
to read 20 pixels in the upper horizontal SRAM. So, there are a 
total of 549 cycles for 4×4 prediction.  

3. 16×16 (8×8) Intra Prediction Hardware Architecture 

The 16×16 intra prediction is similar to the 4×4 intra 
prediction in its architecture and processing method, but it has a  
different mode and processing timing cycle. 

Referring to Fig. 12, six cycles are required to read the 
neighboring data (4 cycles) and generate A,B,C values for the 
plane prediction (2 cycles) of 16×16 prediction.  

The SAE value that has to be Hadamard transformed 
takes187 cycles, which can be calculated by 17 (16 block 
+DC )* 11. The selection of the best mode requires one cycle, 
and the selected prediction mode pel transferring 16×16 
prediction SRAM requires 64 cycles. So, there is a nominal 
total of 257 cycles for 16×16 intra prediction for one 
macroblock. 

To reduce the number of processing cycles for one 
macroblock, we predicted the quantized value of Hadamard-
transformed DC coefficients in the prediction process. Figure 
13 shows the 16×16 intra prediction module architecture,  
 

 

Fig. 13. 16 × 16 intra prediction module integrating Hadamard DC transform. 
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Table 3. Timing cycle for 4 × 4 DC coefficients block. 

Cycle Hadamard input Hadamard f/f enable DC coeff. register file Quantization Ext RAM 

0 DC0, DC1, DC4, DC5     

1 DC2, DC3, DC6, DC7 En DC0, DC1, DC4, DC5   

2 DC8, DC9, DC12, DC13 En DC2, DC3, DC6, DC7   

3 DC10, DC11, DC14, DC15 En DC8, DC9, DC12, DC13   

4  En DC10, DC11, DC14, DC15   

5 DC0, DC2, DC8, DC10     

6 DC1, DC3, DC9, DC11 En    

7 DC4, DC6, DC12, DC14 En  DC0, DC2, DC8, DC10  

8 DC5, DC7, DC13, DC15 En  DC1, DC3, DC9, DC11 DC0, DC2, DC8, DC10

9  En  DC4, DC6, DC12, DC14 DC1, DC3, DC9, DC11

10    DC5, DC7, DC13, DC15 DC4, DC6, DC12, DC14

11     DC5, DC7, DC13, DC15

 

which can predict 2D-Hadamard DC transform results. Since 
we use a Hadamard distortion measure for intra prediction, 
each process element (PE2) has a 2D-Hadamard transform and 
DC_FF (sixteen Hadamard-transformed DC coefficients). 
During the calculation of distortion for the DC Hadamard 
calculation time, DC coefficients divided by 4 are fed into the 
2D Hadamard. 

After mode selection of 16×16 prediction, each DC_FF 
retains sixteen Hadamard-transformed DC coefficients for each 
mode. Therefore, if we apply the Hadamard transform to these 
coefficients directly and select its output by the best selected 
mode, we can get the 2D-Hadamard results of DC coefficients. 
Since the quantization module is in the TQ module, the output 
results are fed into the TQ module.  

Table 3 shows the data processing cycle of a Hadamard 
transform and quantization for luma DC coefficients. Since 
there are twelve processing cycles for the 4×4 DC coefficients 
block as shown in Table 3, the 2D Hadamard transformation 
and quantization step is processed in the last twelve cycles as 
shown in Fig. 12.  

As mentioned before, the 8×8 intra prediction mode is very 
similar for 16×16 intra prediction except for the size of the 
prediction. So the 8×8 prediction mode is processed in the 
16×16 prediction module. It uses same logic for SAE 
calculation and best mode selection logic. There are a total of 
122 cycles for 8×8 prediction including neighboring pixel 
reading, SAE calculation, and prediction pel storing. Since the 
total number of cycles for processing 16×16 and 8×8 
prediction is 397, which is less than the number of cycles 
required for processing 4×4 prediction, sharing logic can be 
accomplished. 

4. TQ/IQIT Processing Timing 

For the 4×4 block prediction mode, as there are sixteen 4×4 
blocks in a macroblock, the predictor cannot obtain the 
reconstructed pixels (unfiltered) when the previous blocks are 
not coded. To make the reconstructed pixels, a TQ/IQIT 
operation is required for the 4×4 prediction mode. So the 
reduction in the number of operation cycles of TQ/IQIT is a 
crucial point in implementing the H.264 encoder. In the 
proposed architecture, we used four parallel input data sets and 
processed four data sets, simultaneously, to reduce the cycle of 
TQ/IQIT. For implementing the quantization module, four 
quantization modules are used for the parallel processing. 
Figure 14 shows the hardware architecture of a TQ module. As 
the 4×4 Hadamard transform and DC coefficient register have 
been moved to the intra 16×16 prediction module, there are no 
1D-Hadamard and DC coefficient register files for luminance. 
In Fig. 14, the DC coefficient register represents the coefficient 
value for chroma components. In the TQ module, the CBP 
process block generates the coeff_cost and all_coeff_cost to be 
used for inter-prediction mode, and generates CBP and 
CBP_BLK information to be used for variable-length-coding 
and the deblocking filter, respectively.      

For the quantization of DC Hadamard output, the data input 
from the 16×16 prediction module is selected by mux and 
transferred into the quantization module. The IQIT module has 
a similar architecture as TQ except for the inverse 4×4 
Hadamard transform.  

Table 4 shows the data processing cycle of the integer DCT 
and quantization module for a 4×4 block. The first cycle 
indicates the address generation cycle for the selected SRAM  
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Fig. 14. TQ hardware architecture. 
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Table 4. Timing cycle for a 4 × 4 block. 

Cycle Address Transform input 
Transform f/f 

enable 
Transform  
register file Quantizatiom Ext RAM 

0 X00, X01, X02, X03      

1 X10, X11, X12, X13 X00, X01, X02, X03     

2 X20, X21, X22, X23 X10, X11, X12, X13 En X00, X01, X02, X03   

3 X30, X31, X32, X33 X20, X21, X22, X23 En X10, X11, X12, X13   

4  X30, X31, X32, X33 En X20, X21, X22, X23   

5   En X30, X31, X32, X33   

6  M00, M10, M20, M30     

7  M01, M11, M21, M31 En    

8  M02, M12, M22, M32 En  M00, M10, M20, M30  

9  M03, M13, M23, M33 En  M01, M11, M21, M31 M00, M10, M20, M30

10   En  M02, M12, M22, M32 M01, M11, M21, M31

11     M03, M13, M23, M33 M02, M12, M22, M32

12      M03, M13, M23, M33

 

 
(among the 16×16 prediction SRAM, 4×4 prediction SRAM, 
inter prediction SRAM, and 8×8 prediction SRAM) according 
to the chosen macroblock mode.  

From cycles 1 to 4, the 4×4 block is 1D-transformed, and 
from cycles 6 to 9, the second 1D-integer DCT is applied. A 

quantization process is applied one clock after the output of 2D 
DCT-transformed data. There is a total of 13 cycles for a 4×4 
block. Table 5 shows the data processing cycle of 2×2 chroma 
Hadamard transformations. A 2×2 Hadamard transformation 
requires four cycles. 
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Table 5. Timing cycle for 2 × 2 DC coefficients block. 

Cycle Hadamard 
input 

Hadamard f/f 
enable Quantization  Ext RAM 

0 DC16, DC17, 
DC18, DC19    

1  En   

2   DC16, DC18, 
DC17, DC19 

 

3    DC16, DC18, 
DC17, DC19

 

 

5. The Number of Cycles for One Macroblock Processing 
in an H.264 Encoder  

For the processing of the D1 resolution (720×480×30 frame) 
encoder, the processing time of one macroblock is calculated 
into about 1300 cycles when the operating frequency of the 
encoder is 54 MHz.  

In H.264, there are two types of prediction modes for an intra 
macroblock, 4×4 prediction mode and 16×16 prediction mode. 
For the calculation of the rd_cost of intra 4×4 prediction, the 
TQ/IQIT has to be operated before the selection of the 
prediction mode (inter, intra16×16, intra 4×4).  

For the rd_cost calculation of the other prediction modes 
except for the 4×4 intra prediction mode, we need no TQ/IQIT 
operation. After the rd_cost calculation of each prediction 
mode, the mode-select logic selects the mode that has the 
smallest value of rd_cost. After the selection of the prediction 
mode, the TQ/IQIT module can start the operation. As the 4×4 
 

block prediction process is the longest cycle for the intra 
prediction, 549 cycles are needed for the intra prediction 
processing cycle. 

After the selection of prediction mode, TQ and IQIT 
operations have to be performed. The allowable number of 
cycles of TQ and IQIT operations for one macroblock is 751, 
which is derived from 1300 cycles minus 549 cycles. Figure 15 
shows one macroblock processing cycle using the prediction 
method as described before. As the quantized DC Hadamard 
value is pre-calculated in the 16×16 prediction process, the 
inverse Hadamard and quantization for the quantized DC 
Hadamard value of the I16MB mode can be performed in the 
same cycle of the first TQ cycle. So we obtain a total of 927 
cycles for one macroblock processing and reduce it by 178 
cycles compared with the original number of timing cycles as 
shown in Fig. 5. Since the reducing method of overhead for 
I16MB is generic, it can be applied to other architectures. If we 
apply this method to the DCT-based mode decision method in 
[11], we can reduce this architecture by approximately 64 
cycles .  

IV. Experimental Results 

For experimental verification, we made a C-language 
reference model of hardware modified from the JM8.5 [13]. 
We compared the output results of our reference-C model with 
that of JM 8.5 model, and confirmed the correctness of our 
model. From the reference model, we extracted the test vector 
for the intra prediction, TQ/IQIT, and mode decision module 
and confirmed the correctness of each hardware module using 
Mentor Graphics ModelSim. The proposed architecture was 
 

 

Fig. 15. Reduction of overhead cycle for I16MB mode using the pre-calculated Hadamard coefficient. 
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Table 6. RAM sizes used. 

RAM D/W Size (bit) Pixel

Luma current RAM 64×32 bit 2,048 256 

Chroma current RAM 32×32 bit 1,024 128 

4×4 prediction RAM 64×32 bit 2,048 256 

16×16 prediction RAM 64×32 bit 2,048 256 

8×8 prediction RAM 32×32 bit 1,024 128 

IDCT_value SRAM 64×64 bit 4,096  

Inter prediction RAM 96×32 bit 3,072 384 

Intra prediction RAM(Y) 180×32 bit 5,760 720 

Intra prediction RAM(Cb,Cr) 180×32 bit 5,760 720 

Most probable mode RAM 180×4 bit 720  

Sum  27,600  

Table 7. Synthesized gate. 

Blocks Gate 

4×4 intra prediction 74,955 gate 

16×16 (8×8) intra prediction 39,058 gate 

TQ/IQIT 70,321 gate 

Others 8,102 gate 

Sum 192,436 gate 

Table 8. Comparison results with the method of Huang and others.

Architecture MB pipelining 
[11] 

MB pipelining  
and DCT-based 

decision [11] 

Our method
(dedicated)

Decision method Hadamard DCT-based Hadamard 

Cycle/MB 1280 1280 927 
Required 
frequency 

52.7 MHz 52.7 MHz 38.17MHz 

Inter slice support No No Yes 
Required bus 

bandwidth 20Mbyte/s 20Mbyte/s 15.6Mbyte/s

Gate size Unknown 74,000 192,436 

 

designed with verilog HDL code and synthesized with 
Synopsys Design Compiler using the Hynix 0.35 µm TLM 
library, cb35os142d. Tables 6 and 7 summarize the RAM size 
and results of synthesis. In Table 6, the sizes of the last three 
SRAMs depend on the resolution of the picture to be encoded.  

The differences from the previous work [11] are shown 
Table 8. Our results have a good point in the number of 
processing cycles needed, but have a larger gate size compared 
with the results of [11]. This is because [11] uses the DCT-

based mode decision, reconfigurable PE, and interleaved 
I4MB/I16MB prediction schedule, whereas our architecture 
uses dedicated logic. But our architecture incorporates inter 
prediction processing and does not require the external 
SDRAM access to acquire the neighboring information, which 
can generate the memory bottleneck problem considering the 
large memory access cycle of motion estimation for inter 
prediction. The external SDRAM memory access of our 
architecture requires only the original 384 pixels to be coded 
for one macroblock.  

V. Conclusion 

In this paper, we propose an efficient architecture for H.264 
intra prediction, transform and quantization (TQ) and inverse 
quantization and inverse transform (IQIT), and mode decision 
modules. It supports sum of absolute error (SAE) calculation 
using Hadamard and inter macroblock processing considering 
the coefficient cost. It can process one macroblock in 549 
cycles for 4×4 intra prediction, which is the worst case method 
of intra prediction. Our main contribution is a reduction 
method of cycle overhead for I16MB mode. We predict the 
quantized value of Hadamard transformed DC coefficients in 
the prediction process, and use these values for IQIT in the 
cycle of the first TQ cycle. Therefore, we can reduce 178 
cycles in our architecture. Our reduction method of cycle 
overhead in I16MB can be applied to other architectures. If we 
applied this method to the DCT-based mode decision method 
[11], we can estimate the reduction to be approximately 64 
cycles. It can process one macroblock for 927 cycles for all 
cases of macroblock type, and it has the capability to process a 
D1 resolution picture at 42 frame/s for a 54 MHz clock. It can 
be directly extended to a 1280×720 resolution at 30 frame/s if 
we use a 108 MHz clock.  
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