
ETRI Journal, Volume 27, Number 5, October 2005 Kibum Suh et al. 511

In this paper, we propose a novel hardware architecture
for an intra-prediction, integer transform, quantization,
inverse integer transform, inverse quantization, and mode
decision module for the macroblock engine of a new video
coding standard, H.264. To reduce the cycle of intra
prediction, transform/quantization, and inverse quanti-
zation/inverse transform of H.264, a reduction method for
cycle overhead in the case of I16MB mode is proposed.
This method can process one macroblock for 927 cycles for
all cases of macroblock type by processing 4×4 Hadamard
transform and quantization during 16×16 prediction. This
module was designed using Verilog Hardware Description
Language (HDL) and operates with a 54 MHz clock using
the Hynix 0.35 µm TLM (triple layer metal) library.

Keywords: Intra prediction, integer transform,
quantization, inverse integer transform, inverse
quantization, H.264.

Manuscript received Jan. 31, 2005; revised July 20, 2005.
The material in this work was presented in part at IT-SoC 2004, Seoul, Korea, Oct. 2004.
Kibum Suh (phone: +82 42 630 9705, email: kbsuh@wsu.ac.kr), is with the Department of

Electronic Engineering, Woosong University, Daejeon, Korea.
Seongmo Park (email: smpark@etri.re.kr) and Hanjin Cho (email: hjcho@etri.re.kr) are with

Basic Research Laboratory, ETRI, Daejeon, Korea.

I. Introduction

Nowadays, H.264 is drawing considerable attention because
it can encode video with approximately three times fewer bits
than the comparable MPEG-2 algorithm. It also offers several
features such as squeezing more television programs into a
given channel bandwidth, delivering quality video over
bandwidth-constrained networks (for example, 3G mobile),
and fitting a high-definition movie feature onto a standard
DVD [1].

The major features of H.264 compared with MPEG-4
(ISO/IEC 14496-2) are as follows: H.264 contains improved
inter-prediction and motion compensator techniques, improved
intra spatial prediction, integer transform, a deblocking filter, a
context adaptive entropy coding method, and so on.

If a block or macroblock is encoded in intra mode, a
prediction block is formed based on previously encoded and
reconstructed (but un-filtered) blocks. This prediction block P
is subtracted from the current block prior to encoding. For the
luminance (luma) samples, P may be formed for each 4×4 sub-
block or for a 16×16 macroblock. There are a total of nine
optional prediction modes for each 4×4 luma block; four
optional modes for a 16×16 luma block; and four modes for a
4×4 chroma intra block.

If a macroblock is in p-slice or b-slice, the rd_cost (distortion
+ λ•rate) value of motion estimation is compared with the
smallest rd_cost value among the intra prediction (16×16 luma
prediction/4×4 luma prediction). The mode decision of a
macroblock is determined by selecting the mode of the
smallest rd_cost value among the probable modes.

For the H.264 encoder, after the mode decision of a
macroblock, each residual macroblock is quantized and
transformed. Whereas previous standards such as MPEG-1,

An Efficient Hardware Architecture of Intra
Prediction and TQ/IQIT Module for H.264 Encoder

 Kibum Suh, Seongmo Park, and Hanjin Cho

512 Kibum Suh et al. ETRI Journal, Volume 27, Number 5, October 2005

MPEG-2, MPEG-4, and H.263 made use of the 8 × 8 discrete
cosine transform (DCT) as the basic transform, H.264 uses
three transforms depending on the type of residual data that is
coded in the bitstream: a transform for the 4×4 array of luma
DC coefficients in intra macroblocks (predicted in 16×16
mode), a transform for the 2×2 array of chroma DC
coefficients (in any macroblock), and a transform for all other
4×4 blocks in the residual data.

Therefore, for the implementation of transform and
quantization (TQ) and inverse quantization and inverse
transform (IQIT), the control flow is dependent on the
macroblock type and is more complex than the previous
standards such as MPEG-1, MPEG-2, and MPEG-4 [2], [3].

Several researchers have been published on H.264 encoder
hardware architecture. The contributions related to the motion
estimator [4]-[7] and transformation [8], [9] are note worthy.
For the hardware implementation of intra-prediction and
transformation, the contribution of Chen and colleagues [10],
[11] is a good solution for a D1 resolution intra frame coder.
Here, they have used approximately 1280 cycles for one
macroblock for the D1 resolution intra frame encoder. Using
the DCT distortion measure, reconfigurable processor element
(PE), and interleaved I4MB/I16MB prediction scheduling,
they can reduce the gate count. Another paper by Chen and
colleagues [12] on the H.264 level 3 inter-prediction encoder is
an excellent contribution, but much of the intra prediction and
transformation is not revealed.

In this paper, we propose an intra prediction hardware
architecture and TQ/IQIT module architecture in an H.264
encoder that can process one macroblock for 927 cycles. We
explain the operation of intra prediction and the TQ/IQIT
module, and a reduction method for cycle overhead in the case
of the I16MB mode in section II. The proposed architecture of
intra prediction and the TQ/IQIT module are discussed in
section III. Finally, experimental results and conclusions drawn
are presented in sections IV and V, respectively.

II. Intra Prediction, TQ/IQIT Module Operation and
the Cycle Overhead for I16 MB Mode

1. 4 × 4 Intra Prediction

The data dependency of 4×4 intra prediction mode is
shown in Fig. 1. The pixels from a to p are predicted from A-
L and M. Pixels labeled in upper case are reconstructed pixels.
Because there are 16 4×4 blocks in a macroblock, the
predictor cannot get the reconstructed pixels when previous
blocks are not coded. JM [13] uses a two-pass algorithm to
code these blocks. It requires all the blocks passing the
transform, quantization, dequantization, and inverse

transformation loop to do a 4×4 intra prediction, which is too
complex for the hardware implementation. For this reason,
Chen and others [14] proposed a modified algorithm, where
original frame pixels instead of reconstructed pixels are used
as predictors, and devised an error term to compensate for the
estimation inaccuracy. But this modification results in quality
degradation for the sequence, which needs many intra MBs.
Therefore, we prefer the JM algorithm for hardware
implementation. In our proposed architecture, intra prediction
and the TQ/IQIT module are fully compatible with JM 8.5
software.

Fig. 1. 4×4 intra prediction.

a b c d

e f g h

i j k l

m n o p

M A B C D E F G

I

J

K

L

H

1
34

56

2. 16 × 16 Intra Prediction

As an alternative to the 4×4 intra prediction mode, the entire
16×16 intra prediction component of a macroblock may be
predicted in one operation. Figure 2 shows the data
dependency of 16×16 intra prediction. The current macroblock
is predicted by the 17 pixels from upper macroblocks and 16
pixels from the left macroblock. The 16×16 intra prediction has

Fig. 2. Data dependency of 16 × 16 intra prediction.

Macroblock boundary

Macroblock boundary

Fig. 3. 16 × 16 intra prediction in four modes.

V

H
0 (vertical)

H

V

1 (horizontal)
H

V Mean (H+V)

H

V

2 (DC) 3 (plane)

H.264 intra 16×16 prediction modes (all predicted from pixels H and V)

ETRI Journal, Volume 27, Number 5, October 2005 Kibum Suh et al. 513

four modes that are calculated for a 16×16 block and is shown
in Fig. 3.

3. 8 × 8 Intra Prediction

Each 8×8 intra prediction component is predicted from
previously encoded chroma samples above and/or to the left,
and both Cb, Cr components always use the same prediction
mode. The four prediction modes for 8×8 prediction are very
similar to the 16×16 intra prediction modes. As the prediction
mode decision method for 8×8 intra prediction is similar to
the16×16 prediction mode, a 16×16 intra prediction module is
used for 8×8 intra prediction for our implementation.

4. TQ/IQIT Operation and Cycle Overhead for I16MB Mode

Data within a macroblock are transmitted in the order shown

Fig. 4. Scanning order of residual blocks within a macroblock.

0

Luma

Cb Cr

2×2 chroma DC
coefficients

1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

18 19

20 21

22 23

24 25

16

(16×16 intra mode only)

4×4 luma DC
coefficients

Luma 4×4 block order for 4×4 intra
prediction and 4x4 residual coding

Chroma 4×4 block order for 4x4
residual coding, shown as 16-25, and
intra 4×4 prediction, shown as 18-21
and 22-25

Residual 4×4 black

17

in Fig. 4. If the macroblock is coded in 16×16 intra mode
(I16MB), then the block labeled “-1” is transmitted first,
containing the DC coefficients of each 4×4 luma block. Next,
the luma residual blocks 0 to 15 are transmitted in the order
shown (with the DC coefficients set to zeros in a 16×16 intra
macroblock). Blocks 16 and 17 contain a 2×2 array of DC
coefficients from the Cb and Cr chroma components,
respectively. Finally, chroma residual blocks 18 to 25 (with
zero DC coefficients) are sent. If the macroblock is not coded
in 16×16 intra mode, then the block labeled “-1” is not
transmitted, and the luma residual blocks 0 to 15 are
transmitted in the order shown (with the DC coefficients). The
chroma coefficients are sent with the same methodology as in
16×16 intra mode.

Figure 5 shows the timing cycle when intra 16×16 mode is
selected. This is our first version for the macroblock processing
cycle. The operation cycle of IQIT can start after 769 cycles, and
the total number of cycles for the I16MB processing is 1105.
Each cycle as given in Fig. 5 is explained in the section III.

When in intra 16×16 mode, the transformation method uses
both 4×4 integer DCT and a Hadamard transform. To code a
macroblock in I16MB mode, 16 blocks have to be 4×4 integer
DCT transformed and quantized, and the DC values obtained
from a 4×4 integer DCT have to be Hadamard transformed and
quantized. Since the DC coefficients of DCT-transformed data
can be obtained after a DCT operation of 16 blocks, IQIT
operation can start after completion of the Hadamard transform
and quantization of DC coefficients (start of IQIT@I16MB).
This fact makes the 178-cycle overhead for I16MB mode
compared with non-I16MB mode. For the encoding cycle of
non-I16MB mode (I4MB, INTER), the operation of IQIT can

Fig. 5. The cycle overhead for I16MB mode.

Intra 4x4 luma prediction mode cycle

……

Cycle

544 cycle

13 13 13 13 13 13 13 13 13

Transform
quantization

Inverse
quantization

Inverse
transform

……
4

(13* 17) + (13 *8) + (5* 2) = 335 cycle

(13*16)+12+(13*8)+(4*2)=332 cycle

549+220+335=1105 cycle

4

4
Intra 16x16 LUMA

…

…

13 12 13 13 13 13

T
Q
(0)

(13*16)+12+335=555 cycle

Intra prediction processing cycle
(Intra 4x4, Intra 16x16, Intra 8x8)

TQ/IQIT processing cycle
Start of IQIT @I16MB

549+(13*16)+12(DC Hadamard)=769 cycle

5 (Data READ)

Start of IQIT
@non- I16 MB

Cycle overhead

T
Q
(1)

T
Q
(2)

T
Q
(3)

T
Q
(4)

T
Q
(5)

T
Q
(6)

T
Q
(7)

T
Q
(8)

T
Q
(9)

T
Q

(10)

T
Q

(11)

T
Q

(12)

T
Q

(13)

T
Q

(14)

T
Q

(15)

T
Q
(0)

T
Q
(1)

T
Q
(2)

T
Q
(3)

T
Q

(14)

T
Q

(15)

D
C
(Y)

T
Q

(16)

T
Q

(17)

T
Q

(18)

T
Q

(19)

D
C

(cb)

T
Q

(20)

T
Q

(21)

T
Q

(22)

T
Q

(23)

D
C

(cr)

Intra 16x16LUMA 8x8 CHROMA

IQ
IT
(0)

IQ
IT
(1)

IQ
IT
(2)

IQ
IT
(3)

IQ
IT
(4)

IQ
IT
(5)

IQ
IT
(6)

IQ
IT
(7)

IQ
IT
(8)

IQ
IT
(9)

IQ
IT

(10)

IQ
IT

(11)

IQ
IT

(12)

IQ
IT

(13)

IQ
IT

(14)

IQ
IT

(15)

I
D
C
(Y)

IQ
IT
(0)

IQ
IT
(1)

IQ
IT
(2)

IQ
IT
(3)

IQ
IT
(4)

IQ
IT
(5)

IQ
IT
(6)

IQ
IT
(7)

IQ
IT
(8)

IQ
IT

(14)

IQ
IT

(15)

I
D
C

(cb)

IQ
IT

(16)

IQ
IT

(17)

IQ
IT

(18)

IQ
IT

(19)

I
D
C

(cr)

IQ
IT

(20)

IQ
IT

(21)

IQ
IT

(22)

IQ
IT

(23)

8x8 CHROMA
13 13

514 Kibum Suh et al. ETRI Journal, Volume 27, Number 5, October 2005

start at the point “start of IQIT @non-I16MB.” To reduce the
cycle overhead in I16MB mode, we have to move the starting
point of IQIT to “start of IQIT @non-I16MB.” If we can
predict the quantized value of Hadamard transformed DC
coefficients, we can reduce the cycle overhead for I16MB
mode.

 The distortion calculation method for 16×16 prediction uses
the same method to code an I16MB macroblock, but while
calculating the distortion, the distortion measure is the sum of
absolute error (SAE) value of 2D-Hadamard transformed
results of the prediction error (the difference between coded
pixel and predicted pel).

Here, we will verify that DC values of the 2D-Hadamard
transform and integer 2D-discrete cosine transform are
basically the same. From this fact, we will confirm that a
Hadamard DC coefficient can be predicted in the 16×16 intra
prediction process. During the 16×16 intra prediction process,
the value of a DC coefficient can be obtained by modifying the
intra prediction module.

A. 4×4 Residual Luma and Chroma Forward Integer
Transform

In H.264, a 4×4 forward DCT transform is modified [8] as

.

1121
2111
2111
1121

1221
1111
2112
1111

33323130

23222120

13121110

03020100

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−

−−
=

xxxx
xxxx
xxxx
xxxx

Y (1)

From (1), we can obtain the DC value Y00 as shown in (2):

).
(

3332313023222120

131211100302010000

xxxxxxxx
xxxxxxxxY
++++++++

+++++++=
 (2)

B. Hadamard Transform

The 4×4 luma DC coefficients of a 16×16 block are grouped
into a 4×4 block and further transformed, for intra frames, to
improve compression.

The input matrix X is formed by picking out DC coefficients
from the 16 transformed 4 × 4 blocks. DC coefficients are then
transformed using a symmetric Hadamard transform in the
form

.2/

1111
1111
1111

1111

1111
1111
1111
1111

33323130

23222120

13121110

03020100

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

xxxx
xxxx
xxxx
xxxx

YD

(3)

From (3), the DC value Y00 of a 2D-Hadamard transform can
be obtained as

.2/)
(

3332313023222120

131211100302010000

xxxxxxxx
xxxxxxxxY
++++++++

+++++++= (4)

From this, it is clear that the DC values of a Hadamard
transform and integer DCT are basically the same. As we use
the Hadamard distortion measure for the intra prediction
process, the DC value of 16 block integer DCT can be obtained
during the distortion calculating process.

As the DC values obtained from the Hadamard transform
and 4×4 integer transform are basically the same, we can
obtain the quantized DC coefficients by collecting the DC
values of the selected I16MB mode among the vertical,
horizontal, DC, and plane modes, and by applying a Hadamard
transform followed by a quantization step. Therefore, we
propose a hardware architecture for the 16×16 prediction
module and quantization module, which can obtain quantized
DC coefficients. This is discussed in section III. The start of an
IQIT operation in the case of I16MB is performed at the point
“start of IQIT @non-I16MB .”

5. Processing of Inter Macroblock and Coded Block Pattern
Consideration

For the 4×4 intra prediction mode or inter prediction mode, a
Hadamard transform of the luma component is not required.
Here, the operation of IQIT can start after the completion cycle
of the first 4×4 block TQ. But in the inter prediction mode, the
coeff_cost value, which is used for coded block pattern (CBP)
calculation, has to be considered. The CBP processing method,
considering the coefficient cost, is incorporated into JM to
improve coding efficiency for inter prediction and chroma
components.

1:0?)4)),(((
3

0

15

0
88 ≤= ∑∑

= =
×

i j
block jiccbp , (5)

where ? :x y z returns y if x is true and z if x is false.

if (,) 1
3 if 0 and (,) 1

(,) 2 if 1 2 and (,) 1
1 if 3 5 and (,) 1
0 otherwise,

coeff i j
j coeff i j

c i j j coeff i j
j coeff i j

∞ >⎧
⎪ = =⎪⎪= ≤ ≤ =⎨
⎪ ≤ ≤ =⎪
⎪⎩

(6)

where j means a zero run value.

{ }3 3 15 3 15

8 8 0 0 0 0 0
_ ((,)) 4)?0 : (,) ,all

block i j i j
Coeff C c i j c i j

× = = = = =
= ≤∑ ∑ ∑ ∑ ∑ (7)

ETRI Journal, Volume 27, Number 5, October 2005 Kibum Suh et al. 515

0 if _ 5.luma allCbp Coeff C= ≤ (8)

Equations (5) and (6) indicate that when the quantized
coefficients (level) of four 4×4 blocks are -1, 0, 1, and the
summation of coeff_cost is less than 4, this 8×8 block is not
coded in the bitstream. In this case, the reconstructed data for
the 8×8 block is the prediction data. This means that the IDCT
value of the 8×8 block has to be processed to all zeros.
Equations (7) and (8) indicate that when the conditional sum of
coefficient costs for four 8×8 blocks is less than 5, all of the
luma components are not coded in the bitstream. For this
reason, if we start an operation of IQIT at the “start of
IQIT@non-I16MB”, we cannot obtain a correct reconstructed
frame. But in the real architecture, we start the IQ operation at
the “start of IQIT@non-I16MB”, and use the temporal storage
memory ‘IDCT value SRAM’ to store the IDCT results. After
determination of the CBP, the selected value from the IDCT
value and 0s according to the CBP will be fed into the
summation logic. Hence, there is no cycle overhead in inter
macroblock.

III. Proposed Hardware Architecture

Figure 6 shows the hardware architecture of intra prediction,
TQ/IQIT, and mode decision blocks. As the intra prediction
module intrinsically uses neighboring pixels to predict the

value of the current pixel, the neighboring pixels have to be
stored. This pixel is stored in intra prediction SRAM as shown
in Fig. 6. After the mode decision of the macroblock, this pixel
is updated using the summated data of the IDCT value and
prediction data for the chosen mode. These values can be
determined only after one macroblock processing. But in the
case of 4×4 intra prediction, the neighboring pixels for a 4×4
block depend on the block number position as shown in Fig. 4.
To get the left neighboring pixels of block number 1, block 0
has to be processed using the subtraction operation, TQ/IQIT,
and summation operation. Thus, before the determination of
the macroblock mode, a TQ/IQIT operation has to be
performed. That is, for the 4×4 block prediction mode, because
there are sixteen 4×4 blocks in a macroblock, the predictor
can’t obtain the reconstructed pixels (unfiltered) when the
previous blocks are not coded. Therefore, the TQ/IQIT
operation is required for calculating the distortion (rd_cost)
values of intra 4×4 prediction. Thus, we devised the intra
prediction flip-flops to store the prediction data for 4×4 blocks.
During the 4×4 prediction, neighboring pixels for each 4×4
block have to be updated in the prediction flip-flops. That is,
intra prediction flip-flops are updated with summation data of
the IDCT value and prediction value during the 4×4 prediction
mode, whereas intra prediction RAM is updated after the
decision of macroblock type.

As mentioned before, the 16×16 prediction and 8×8

Fig. 6. Intra prediction and TQ/IQIT block diagram.

TQ/IQIT

Loop filter

32 bit

Inter prediction

Luma
current
RAM

(64X32)

Intra_prediction
flip-flop

Intra_prediction_ram

Best mode
selection

logic

rd_cost
select

+

Chroma
current
RAM

(32x32)

MUX
2

pred_value

rd_cost

rd_cost Inter
prediction

SRAM

4x4
pred_pel

calculation

16x16 (8x8)
pred_pel

calculation

TQ/IQIT

IDCT
value

SRAM

pred_value
32 bit

32 bit

16x16
(8x8) SAE
calculation

16x16(8x8)
mode

selection
logic

32bit
32bit

16x16 (8x8)
prediction

SRAM

8x8
prediction

SRAM

pred_value

MUX
1

pred_value

4x4 SAE
calculation

4x4 mode
selection

logic

4x4
prediction

SRAM

-

+

-

516 Kibum Suh et al. ETRI Journal, Volume 27, Number 5, October 2005

Fig. 7. Intra prediction RAM memory.

Cb Cr

180

180

Horizontal part (RAM)

Y0 Y1

Cb0 Cb1Cr0 Cr1

4

4

Vertical part (flip-flop)

Y

32bit

32bit

prediction use a similar method for prediction; therefore, we
use a design for the 16×16 prediction module that can also be
used for the 8×8 prediction module.

The neighboring pixel values for each macroblock in the
prediction RAM are transferred to the prediction flip-flops
before the start of intra-prediction for each macroblock.

In Fig. 6, the TQ/IQIT module is shown twice. One is for
4×4 prediction timing and the other is for timing after the
macroblock mode decision. But in a real application, only one
TQ/IQIT module is implemented because the operation timing
of two TQ/ IQITs is different.

The memory architecture of intra prediction RAM is shown
in Fig. 7. The prediction RAM is separated into horizontal and
vertical parts. Each part represents the neighboring pixel of the
macroblock boundary. Because the application of our encoder
is for D1 resolution, we use 32 bit × 180 (720 pixel) horizontal
SRAM for both luminance data and chrominance data. As 16
vertical prediction data are needed for luminance data, we use a
vertical prediction 128-bit flip-flops for the vertical part. For the
chrominance data, eight pixels are required for vertical
prediction data of both Cb and Cr.

First, the intra 4×4 prediction mode is dealt here. Using the
reconstructed pixel value of the intra prediction flip-flops, the
4×4 prediction pel calculation module computes the
prediction values of each mode. Using the current pixel and
the prediction values, the 4×4 SAE calculation module
outputs the SAE values of 9 modes. By comparing the
rd_cost (SAE+λ•rate) value of 9 modes, 4×4 mode selection
logic selects the best mode with the minimum rd_cost and
outputs the prediction values to be fed into the 4×4 prediction
SRAM and TQ. By using the same method, 16×16 and 8×8
intra prediction outputs each selected values after choosing the
best mode.

Each prediction value of the best mode selected by 16×16
and 4×4 mode selection logic are stored in 16×16 and 4×4
prediction SRAMs, each having a size of 256 bytes. The
prediction values of the best mode selected in the case of 8×8
prediction are stored in 8×8 prediction SRAM, which is 128
bytes in size. Meanwhile, the prediction values of the best

mode selected by the inter prediction module have to be
stored in inter prediction SRAM, which is 384 bytes in size.
The rd_cost value of inter prediction, which is calculated by
the motion estimation module, is transferred to this module
using AMBA (Advanced Microcontroller Bus Architecture)
bus.

The best mode selection logic chooses the best mode among
the 4×4 intra prediction, 16×16 intra prediction, and inter
prediction with the best rd_cost calculated by each mode
selection logic.

Using the selected mode from the best mode selection logic,
MUX2 selects the stored values in 16×16, 4×4, and 8×8 inter
prediction SRAM and transfers the values to the subtraction
logic.

Output values of MUX2 have to be subtracted from the
current value, and its subtracted values are transferred to the
TQ module. After the IQIT operation is complete for each
DPCMed value, the addition of the output values of IQIT and
the predicted values in selected prediction SRAM is done,
and its added values are stored in intra prediction RAM and a
384-byte sized buffer of the loop filter. The IDCT value
SRAM has a size of 256 × 16 bits and is used for storing
IDCT results for luma components for the inter prediction
macroblock. For the inter prediction macroblock, the
coefficient cost value has to be considered for the
reconstruction of a macroblock. Until the TQ operation for 16
blocks is completed, the cbp (coded block pattern) value will
not be determined. But in our architecture, because the IQIT
operation starts after the first TQ cycle in order to reduce the
cycle of one macroblock cycle, the reconstruction of a pixel
will be mismatched. So, IDCT values are stored in the RAM
and are used for summation after the 16 blocks’ TQ operation
considering the cbpluma value.

1. Intra Prediction Flip-Flop Architecture

For intra prediction processing for one macroblock, 37
neighboring pixels are required for the luminance component
and 34 neighboring pixels are required for the chrominance
components. Figure 8 shows the required pixels for the
luminance component. For the horizontal direction, 21
neighboring pixels are required because the intra 4×4
prediction needs an M value and 16 pixels in the upper side
and 4 pixels on the right upper side. For the upper side of the
chroma components, nine upper neighboring pixels are
required for each component. For the vertical direction, 16 left
neighboring pixels are needed for the luma components, and
eight left neighboring pixels are needed for Cb and Cr,
respectively.

Thus, we map these neighboring pixels into intra prediction

ETRI Journal, Volume 27, Number 5, October 2005 Kibum Suh et al. 517

0

0

A B C D

1

E F G H

4 5

M
I
J
K
L

2 3 6 7

8 9 12 13

10 11 14 15

0

I
J
K
L 12 1314 15

I
J
K8

4
0

9
5
1

10
6
2

11
7
3

A B C D E F G HM

A B C D E F G HM

A B C DMHorizontal

M M M M

M M M M

M M M M

M M M M

M M M

m _ff

M M M M M M M M M M M M M

20

16

Block

0

Fig. 8. Intra prediction flip-flops.

Ve
rti

ca
l

Fig. 9. M flip-flops.

Block

M M M

m_ff

M M M M M M M M M M M M M

0

12 13 14 15

I
J
K8

4
0

9
5
1

10
6
2

11
7
3

12 13 14 15

I
J
K8

4
0

9
5
1

10
6
2

11
7
3

A B C D

M

0 1

I
J
K
L

M

flip-flops. These flip-flops have to be read from the intra
prediction SRAM before the start of a macroblock and are
updated during the operation of 4×4 intra prediction. The intra
4×4 prediction block executes a prediction operation after
reading eight pixel values in the horizontal part and four pixel
values in the vertical part, corresponding to the position of the
current block.

In the case of 4×4 intra prediction, the result of adding IDCT
and prediction values has to be stored in the intra prediction
flip-flops for the prediction of the neighboring pixel of the next
block.

In the case of the vertical neighboring pixel, the 3rd, 7th,
11th, and 15th pixel data of one block are stored in the
vertical prediction flip-flops, and for the horizontal
neighboring pixel, the 12th, 13th, 14th, and 15th pixel data
are stored in the horizontal prediction flip-flops. These stored
pixel values in the flip-flops are used for the prediction of the
next block. Figure 9 shows the M flip-flops. The M flip-flops
indicate the upper-left pixels which are only used for 4×4
intra prediction.

In Fig. 9, the M value of block 1 exists as D in the horizontal
prediction flip-flop while block 0 is processing. But, after
updating the flip-flop of position D with the value of the 15th
pixel of block 0, the D pixel data value no longer exists

because of overwriting.
Here, before updating the flip-flop of position D with the

15th pixel, the value of D is transferred to the M flip-flop with
index 0. Because there are 16 blocks in macroblock luminance
components, 16 storage positions are needed.

Table 1 shows the read index of M for each block. When
block 1 is processing, the M value of block 1 is read from the
M flip-flop with index 0. From Fig. 9, we can see that the M
value of block 1 is the D value of block 0.

By introducing the intra prediction flip-flops and M flip-flops,
the 4×4 prediction process can be done without memory access.
Therefore, we can access the neighboring pixel at any time to
generate the predicted pels for 9 modes. Since the neighboring
pixel finding method for JM is different from our method, we
modified the neighboring pixel finding method described
above in our reference software and confirmed the correctness
of our method.

Table 1. Read index of M for each block.

Block 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Index
of M

5 0 7 2 1 4 3 6 13 8 15 10 9 12 11 14

2. 4×4 Intra Prediction Hardware Architecture

The 4×4 intra prediction module consists of the prediction
pel calculation module, 4×4 SAE calculation module, and 4×4
mode selection logic, as shown in Fig. 10.

Using the pixels read from the intra prediction flip-flops, the
prediction pel calculation module generates 36 pixel values
simultaneously for 9 mode. In the 4×4 SAE calculation module,
the differences of the current pixel and prediction pel value are
computed, and their computed differences are Hadamard-
transformed.

This module computes the SAE value by addition of the
absolute value of the transformed difference. Table 2 shows the
computed SAE calculation time cycle using the 2D-Hadamard
transform. The SAE calculation time takes eleven cycles
because of the parallel processing of 4 pixel data. The 4×4
mode selection logic finds the best mode with the smallest
rd_cost among the 9 mode. The rd_cost is calculated by
addition of the calculated value of 4×4 SAE and the value in
proportion to the amount of bits to be generated for the syntax
element in intra 4×4 pred_mode.

Figure 11 shows the 4×4 intra prediction processing cycle of
a 4×4 block. As shown in Fig., 1 the cycle is required to read
the pixel from the luma current RAM and to calculate the

518 Kibum Suh et al. ETRI Journal, Volume 27, Number 5, October 2005

Fig. 10. 4 × 4 intra prediction hardware module.

4x4 mode
selection logic

4x4 SAE
calculation module

Best
mode

OrgY
SRAM

=(64x8)*4

Best
mode

operation

Intra
prediction
flip-flop

4x4
prediction

pel
generation

module

－ 2D
Hadamard

ABS

ABS

ABS

ABS

+

+

+
+

－

－

－

SAE

PE08 bit*1

Compare
module

8 bit*1
8 bit*1
8 bit*1
8 bit*1
8 bit*1
8 bit*1
8 bit*1 Compare

module

Compare
module

Compare
module

PE0

PE0

PE0

PE0

PE0

PE0

PE0

PE0

Table 2. Hadamard distortion calculation time.

Count Address Hadamard input Transpose register file Hadamard output Org-pred TQ IQIT
1 (0, 1, 2, 3)
2 (4, 5, 6, 7) (0, 1, 2, 3)
3 (8, 9, 10, 11) (4, 5, 6, 7) (0, 1, 2, 3)
4 (12, 13, 14, 15) (8, 9, 10, 11) (4, 5, 6, 7)
5 (12, 13, 14, 15) (8, 9, 10, 11)
6 (12, 13, 14, 15)
7 (0, 4, 8, 12)
8 (1, 5, 9, 13) (0, 4, 8, 12)
9 (2, 6, 10, 14) (1, 5, 9, 13)
10 (3, 7, 11, 15) (2, 6, 10, 14)
11 (3, 7, 11, 15)
12 Cal_rdcost 4×4
13 Mode_sel
14 (0, 1, 2, 3)
15 (4, 5, 6, 7)
16 (8, 9, 10, 11)
17

Prediction 4×4
SRAM write

(12, 13, 14, 15)
18
19
20
21
22
23
24
25

TQ
operation

26
27
28
29
30
31
32
33

IQIT
operation

ETRI Journal, Volume 27, Number 5, October 2005 Kibum Suh et al. 519

prediction value of each mode.
The SAE value that has been Hadamard transformed takes

eleven cycles. The selection of the best mode takes one cycle.

Fig. 11. Intra 4 × 4 prediction hardware cycles.

34 cycles

Inter prediction operation
cycle TQ/IQIT operation cycle

3

3

1 11 1 4 11
12

Intra 4 × 4 prediction and TQ/IQIT operation timing (use hadamard=1)

Org_data –
Prediction data

SAE calculation
time

Best mode
Selection time

Current value –
Prediction value

TQ Operation
cycle

IQIT Operation
cycle

Fig. 12. Intra 16×16 prediction hardware cycles.

6 176

Intra 16 ×16 prediction
prediction operation timing

(Data read & A,B,C value
calculation for plane prediction)
2D Hadamard calculation

time for 16 block

11 1 64 12

DC Hadamard calculation time

Best mode select

Selected prediction pel
generation & storing cycle

DC Hadmard T & Q

269 cycles

Also, it takes one cycle to compute the difference of the current
values and prediction value. Thirteen cycles are required for the
transformation and quantization cycle. For the inverse
quantization and inverse transform case, thirteen cycles are
needed. We will explain each case in sub-sections.

So, since 34 cycles are needed for 4×4 intra prediction, and
as one macroblock has sixteen blocks, the total prediction takes
544 cycles. Since the prediction flip-flops have to be updated
before the start of intra 4×4 prediction, five cycles are required
to read 20 pixels in the upper horizontal SRAM. So, there are a
total of 549 cycles for 4×4 prediction.

3. 16×16 (8×8) Intra Prediction Hardware Architecture

The 16×16 intra prediction is similar to the 4×4 intra
prediction in its architecture and processing method, but it has a
different mode and processing timing cycle.

Referring to Fig. 12, six cycles are required to read the
neighboring data (4 cycles) and generate A,B,C values for the
plane prediction (2 cycles) of 16×16 prediction.

The SAE value that has to be Hadamard transformed
takes187 cycles, which can be calculated by 17 (16 block
+DC)* 11. The selection of the best mode requires one cycle,
and the selected prediction mode pel transferring 16×16
prediction SRAM requires 64 cycles. So, there is a nominal
total of 257 cycles for 16×16 intra prediction for one
macroblock.

To reduce the number of processing cycles for one
macroblock, we predicted the quantized value of Hadamard-
transformed DC coefficients in the prediction process. Figure
13 shows the 16×16 intra prediction module architecture,

Fig. 13. 16 × 16 intra prediction module integrating Hadamard DC transform.

16x16 mode
(8x8 mode)

selection logic

16x16 SAE (8x8 SAE)
calculation module

Best
mode

16 x16

OrgY
CbCr

SRAM

Best
mode

operation

Intra
prediction

fip-flop

16x16 (8x8)
prediction

pel
generation

module

－

2D
Hadamard ABS

ABS

ABS

ABS

 +

 +

 +
 +

－

－

－

MUX

SAE

DC_FF

PE2

Quanti-
zation
(in TQ)

MUX
VLC

DATA

8bit *1

Div 4

MUX

Div 2

Best
mode
8 x8

8bit *1

8bit *1
8bit *1

8bit *1

8bit *1

8bit *1

8bit *1

PE2

PE2

PE2

520 Kibum Suh et al. ETRI Journal, Volume 27, Number 5, October 2005

Table 3. Timing cycle for 4 × 4 DC coefficients block.

Cycle Hadamard input Hadamard f/f enable DC coeff. register file Quantization Ext RAM

0 DC0, DC1, DC4, DC5

1 DC2, DC3, DC6, DC7 En DC0, DC1, DC4, DC5

2 DC8, DC9, DC12, DC13 En DC2, DC3, DC6, DC7

3 DC10, DC11, DC14, DC15 En DC8, DC9, DC12, DC13

4 En DC10, DC11, DC14, DC15

5 DC0, DC2, DC8, DC10

6 DC1, DC3, DC9, DC11 En

7 DC4, DC6, DC12, DC14 En DC0, DC2, DC8, DC10

8 DC5, DC7, DC13, DC15 En DC1, DC3, DC9, DC11 DC0, DC2, DC8, DC10

9 En DC4, DC6, DC12, DC14 DC1, DC3, DC9, DC11

10 DC5, DC7, DC13, DC15 DC4, DC6, DC12, DC14

11 DC5, DC7, DC13, DC15

which can predict 2D-Hadamard DC transform results. Since
we use a Hadamard distortion measure for intra prediction,
each process element (PE2) has a 2D-Hadamard transform and
DC_FF (sixteen Hadamard-transformed DC coefficients).
During the calculation of distortion for the DC Hadamard
calculation time, DC coefficients divided by 4 are fed into the
2D Hadamard.

After mode selection of 16×16 prediction, each DC_FF
retains sixteen Hadamard-transformed DC coefficients for each
mode. Therefore, if we apply the Hadamard transform to these
coefficients directly and select its output by the best selected
mode, we can get the 2D-Hadamard results of DC coefficients.
Since the quantization module is in the TQ module, the output
results are fed into the TQ module.

Table 3 shows the data processing cycle of a Hadamard
transform and quantization for luma DC coefficients. Since
there are twelve processing cycles for the 4×4 DC coefficients
block as shown in Table 3, the 2D Hadamard transformation
and quantization step is processed in the last twelve cycles as
shown in Fig. 12.

As mentioned before, the 8×8 intra prediction mode is very
similar for 16×16 intra prediction except for the size of the
prediction. So the 8×8 prediction mode is processed in the
16×16 prediction module. It uses same logic for SAE
calculation and best mode selection logic. There are a total of
122 cycles for 8×8 prediction including neighboring pixel
reading, SAE calculation, and prediction pel storing. Since the
total number of cycles for processing 16×16 and 8×8
prediction is 397, which is less than the number of cycles
required for processing 4×4 prediction, sharing logic can be
accomplished.

4. TQ/IQIT Processing Timing

For the 4×4 block prediction mode, as there are sixteen 4×4
blocks in a macroblock, the predictor cannot obtain the
reconstructed pixels (unfiltered) when the previous blocks are
not coded. To make the reconstructed pixels, a TQ/IQIT
operation is required for the 4×4 prediction mode. So the
reduction in the number of operation cycles of TQ/IQIT is a
crucial point in implementing the H.264 encoder. In the
proposed architecture, we used four parallel input data sets and
processed four data sets, simultaneously, to reduce the cycle of
TQ/IQIT. For implementing the quantization module, four
quantization modules are used for the parallel processing.
Figure 14 shows the hardware architecture of a TQ module. As
the 4×4 Hadamard transform and DC coefficient register have
been moved to the intra 16×16 prediction module, there are no
1D-Hadamard and DC coefficient register files for luminance.
In Fig. 14, the DC coefficient register represents the coefficient
value for chroma components. In the TQ module, the CBP
process block generates the coeff_cost and all_coeff_cost to be
used for inter-prediction mode, and generates CBP and
CBP_BLK information to be used for variable-length-coding
and the deblocking filter, respectively.

For the quantization of DC Hadamard output, the data input
from the 16×16 prediction module is selected by mux and
transferred into the quantization module. The IQIT module has
a similar architecture as TQ except for the inverse 4×4
Hadamard transform.

Table 4 shows the data processing cycle of the integer DCT
and quantization module for a 4×4 block. The first cycle
indicates the address generation cycle for the selected SRAM

ETRI Journal, Volume 27, Number 5, October 2005 Kibum Suh et al. 521

Fig. 14. TQ hardware architecture.

1D
integer
DCT

QuantX00

.

.

.

...

...

..

.

Input RAM
96x9*4

VLC RAM
102x64

DC coeff
register

file

Transpose
register

file

Quant

Quant

Quant

9 bit x 1
16 bit x 4

16 bit x 4

..

.

..

.

.

..

.

.

.

Hadamard
2x2 MUX

MUX

CBP process
Coeff_cost

All_coeff_cost
CBP

CBP_BLK

X00

Input data Ouput data

DC Hadamard output from
16x16 prediction module

X10
X20

X30

X01

X11
X21

X31

X02

X12
X22

X32

X03

X13
X23

X33

X10
X20
X30

X01
X11
X21
X31

X02
X12
X22
X32

X03
X13
X23
X33

9 bit x 1

9 bit x 1

9 bit x 1

9 bit x 4

16 bit x 4

16 bit x 1

16 bit x 4

16 bit x 4

16 bit x 4

16 bit x 4

16 bit x 1

16 bit x 1

16 bit x 1

16 bit x 1

16 bit x 1

16 bit x 1

16 bit x 1

16 bit x 1

M00
M01
M02
M03

M10
M11
M12
M13

M20
M21
M22
M23

M30
M31
M32
M33

M00

M10
M20

M30

M01

M11
M21

M31

M02

M12
M22

M32

M03

M13
M23

M33

Table 4. Timing cycle for a 4 × 4 block.

Cycle Address Transform input
Transform f/f

enable
Transform
register file Quantizatiom Ext RAM

0 X00, X01, X02, X03

1 X10, X11, X12, X13 X00, X01, X02, X03

2 X20, X21, X22, X23 X10, X11, X12, X13 En X00, X01, X02, X03

3 X30, X31, X32, X33 X20, X21, X22, X23 En X10, X11, X12, X13

4 X30, X31, X32, X33 En X20, X21, X22, X23

5 En X30, X31, X32, X33

6 M00, M10, M20, M30

7 M01, M11, M21, M31 En

8 M02, M12, M22, M32 En M00, M10, M20, M30

9 M03, M13, M23, M33 En M01, M11, M21, M31 M00, M10, M20, M30

10 En M02, M12, M22, M32 M01, M11, M21, M31

11 M03, M13, M23, M33 M02, M12, M22, M32

12 M03, M13, M23, M33

(among the 16×16 prediction SRAM, 4×4 prediction SRAM,
inter prediction SRAM, and 8×8 prediction SRAM) according
to the chosen macroblock mode.

From cycles 1 to 4, the 4×4 block is 1D-transformed, and
from cycles 6 to 9, the second 1D-integer DCT is applied. A

quantization process is applied one clock after the output of 2D
DCT-transformed data. There is a total of 13 cycles for a 4×4
block. Table 5 shows the data processing cycle of 2×2 chroma
Hadamard transformations. A 2×2 Hadamard transformation
requires four cycles.

522 Kibum Suh et al. ETRI Journal, Volume 27, Number 5, October 2005

Table 5. Timing cycle for 2 × 2 DC coefficients block.

Cycle Hadamard
input

Hadamard f/f
enable Quantization Ext RAM

0 DC16, DC17,
DC18, DC19

1 En

2 DC16, DC18,
DC17, DC19

3 DC16, DC18,
DC17, DC19

5. The Number of Cycles for One Macroblock Processing
in an H.264 Encoder

For the processing of the D1 resolution (720×480×30 frame)
encoder, the processing time of one macroblock is calculated
into about 1300 cycles when the operating frequency of the
encoder is 54 MHz.

In H.264, there are two types of prediction modes for an intra
macroblock, 4×4 prediction mode and 16×16 prediction mode.
For the calculation of the rd_cost of intra 4×4 prediction, the
TQ/IQIT has to be operated before the selection of the
prediction mode (inter, intra16×16, intra 4×4).

For the rd_cost calculation of the other prediction modes
except for the 4×4 intra prediction mode, we need no TQ/IQIT
operation. After the rd_cost calculation of each prediction
mode, the mode-select logic selects the mode that has the
smallest value of rd_cost. After the selection of the prediction
mode, the TQ/IQIT module can start the operation. As the 4×4

block prediction process is the longest cycle for the intra
prediction, 549 cycles are needed for the intra prediction
processing cycle.

After the selection of prediction mode, TQ and IQIT
operations have to be performed. The allowable number of
cycles of TQ and IQIT operations for one macroblock is 751,
which is derived from 1300 cycles minus 549 cycles. Figure 15
shows one macroblock processing cycle using the prediction
method as described before. As the quantized DC Hadamard
value is pre-calculated in the 16×16 prediction process, the
inverse Hadamard and quantization for the quantized DC
Hadamard value of the I16MB mode can be performed in the
same cycle of the first TQ cycle. So we obtain a total of 927
cycles for one macroblock processing and reduce it by 178
cycles compared with the original number of timing cycles as
shown in Fig. 5. Since the reducing method of overhead for
I16MB is generic, it can be applied to other architectures. If we
apply this method to the DCT-based mode decision method in
[11], we can reduce this architecture by approximately 64
cycles .

IV. Experimental Results

For experimental verification, we made a C-language
reference model of hardware modified from the JM8.5 [13].
We compared the output results of our reference-C model with
that of JM 8.5 model, and confirmed the correctness of our
model. From the reference model, we extracted the test vector
for the intra prediction, TQ/IQIT, and mode decision module
and confirmed the correctness of each hardware module using
Mentor Graphics ModelSim. The proposed architecture was

Fig. 15. Reduction of overhead cycle for I16MB mode using the pre-calculated Hadamard coefficient.

Transform
quantization

Inverse
quantization

Inverse
transform

Intra 4x4 luma prediction mode cycle

……

Cycle

544 cycle

……

549 + 378 = 927 cycle

LUMA CHROMA
…

……

Precalculated
DC Hadamard coefficient

Intra prediction processing cycle TQ/IQIT processing cycle

Luma summation
considerin coeff_cost

126 data READ & A, B, C value calculation
for plane prediction)

Intra 8x8 chroma
prediction mode cycle

5 (data READ)

549 cycle

T
Q
(0)

T
Q
(1)

T
Q
(2)

T
Q
(3)

T
Q
(4)

T
Q
(5)

T
Q
(6)

T
Q
(7)

T
Q
(8)

T
Q
(9)

T
Q

(10)

T
Q

(11)

T
Q

(12)

T
Q

(13)

T
Q

(14)

T
Q

(15)

IQ
IT
(0)

IQ
IT
(1)

IQ
IT
(2)

IQ
IT
(3)

IQ
IT
(4)

IQ
IT
(5)

IQ
IT
(6)

IQ
IT
(7)

IQ
IT
(8)

IQ
IT
(9)

IQ
IT

(10)

IQ
IT

(11)

IQ
IT

(12)

IQ
IT

(13)

IQ
IT

(14)

IQ
IT

(15)

Intra 16x16 luma prediction mode cycle

CHROMALUMA

13

(13*17) + (13*8) + (5*2) + 43 = 378 cycle

(13*16) + (13*8) + (4*2) = 320 cycle
13 13 13

13 13 13 13 13 13 13 43 5 13 13 13 13 13 13 13 135

13 13 13 13 13 13 4 13 13 13 13 13

DC
(Y)

122 64

T
Q
(0)

T
Q
(1)

T
Q
(2)

T
Q
(3)

T
Q

(14)

T
Q

(15)

T
Q

(16)

T
Q

(17)

T
Q

(18)

T
Q

(19)

D
C

(cb)

T
Q

(20)

T
Q

(21)

T
Q

(22)

T
Q

(23)

D
C

(cr)

I
D
C

(Y)

IQ
IT
(0)

IQ
IT
(1)

IQ
IT
(2)

IQ
IT

(13)

IQ
IT

(14)

IQ
IT

(15)

I
D
C

(cb)

IQ
IT

(16)

IQ
IT

(17)

IQ
IT

(18)

IQ
IT

(19)

I
D
C

(cr)

IQ
IT

(20)

IQ
IT

(21)

IQ
IT

(22)

IQ
IT

(23)

ETRI Journal, Volume 27, Number 5, October 2005 Kibum Suh et al. 523

Table 6. RAM sizes used.

RAM D/W Size (bit) Pixel

Luma current RAM 64×32 bit 2,048 256

Chroma current RAM 32×32 bit 1,024 128

4×4 prediction RAM 64×32 bit 2,048 256

16×16 prediction RAM 64×32 bit 2,048 256

8×8 prediction RAM 32×32 bit 1,024 128

IDCT_value SRAM 64×64 bit 4,096

Inter prediction RAM 96×32 bit 3,072 384

Intra prediction RAM(Y) 180×32 bit 5,760 720

Intra prediction RAM(Cb,Cr) 180×32 bit 5,760 720

Most probable mode RAM 180×4 bit 720

Sum 27,600

Table 7. Synthesized gate.

Blocks Gate

4×4 intra prediction 74,955 gate

16×16 (8×8) intra prediction 39,058 gate

TQ/IQIT 70,321 gate

Others 8,102 gate

Sum 192,436 gate

Table 8. Comparison results with the method of Huang and others.

Architecture MB pipelining
[11]

MB pipelining
and DCT-based

decision [11]

Our method
(dedicated)

Decision method Hadamard DCT-based Hadamard

Cycle/MB 1280 1280 927
Required
frequency

52.7 MHz 52.7 MHz 38.17MHz

Inter slice support No No Yes
Required bus

bandwidth 20Mbyte/s 20Mbyte/s 15.6Mbyte/s

Gate size Unknown 74,000 192,436

designed with verilog HDL code and synthesized with
Synopsys Design Compiler using the Hynix 0.35 µm TLM
library, cb35os142d. Tables 6 and 7 summarize the RAM size
and results of synthesis. In Table 6, the sizes of the last three
SRAMs depend on the resolution of the picture to be encoded.

The differences from the previous work [11] are shown
Table 8. Our results have a good point in the number of
processing cycles needed, but have a larger gate size compared
with the results of [11]. This is because [11] uses the DCT-

based mode decision, reconfigurable PE, and interleaved
I4MB/I16MB prediction schedule, whereas our architecture
uses dedicated logic. But our architecture incorporates inter
prediction processing and does not require the external
SDRAM access to acquire the neighboring information, which
can generate the memory bottleneck problem considering the
large memory access cycle of motion estimation for inter
prediction. The external SDRAM memory access of our
architecture requires only the original 384 pixels to be coded
for one macroblock.

V. Conclusion

In this paper, we propose an efficient architecture for H.264
intra prediction, transform and quantization (TQ) and inverse
quantization and inverse transform (IQIT), and mode decision
modules. It supports sum of absolute error (SAE) calculation
using Hadamard and inter macroblock processing considering
the coefficient cost. It can process one macroblock in 549
cycles for 4×4 intra prediction, which is the worst case method
of intra prediction. Our main contribution is a reduction
method of cycle overhead for I16MB mode. We predict the
quantized value of Hadamard transformed DC coefficients in
the prediction process, and use these values for IQIT in the
cycle of the first TQ cycle. Therefore, we can reduce 178
cycles in our architecture. Our reduction method of cycle
overhead in I16MB can be applied to other architectures. If we
applied this method to the DCT-based mode decision method
[11], we can estimate the reduction to be approximately 64
cycles. It can process one macroblock for 927 cycles for all
cases of macroblock type, and it has the capability to process a
D1 resolution picture at 42 frame/s for a 54 MHz clock. It can
be directly extended to a 1280×720 resolution at 30 frame/s if
we use a 108 MHz clock.

References

[1] ISO/IEC 14496-10 International Standard (ITU-T Rec. H.264).
[2] Seong-Min Kim, Ju-Hyun Park, etc. “Hardware-Software

Implementation of MPEG-4 Video Codec,” ETRI J., vol.25, no.6,
Dec. 2003, pp.489-502.

[3] Bong-Ho Lee, Kyu-Tae Yang, Young Kwon Hahm, Soo In Lee,
and Chieteuk Ahn, “A Framework for MPEG-4 Contents
Delivery over DMB,” ETRI J., vol.26, no.2, Apr. 2004, pp.112-
121.

[4] Jae Hun Lee and Nam Suk Lee, “Variable Block Size Motion
Estimation Algorithm and Its Hardware Architecture for
H.264/AVC,” Proc. IEEE Int’l Symp. Circuits and Systems, vol.3,
2004, pp.741-744.

[5] Yueh-Yi Wang, Yang-Tsung Peng, and Chun-Jen Tsai, “VLSI

524 Kibum Suh et al. ETRI Journal, Volume 27, Number 5, October 2005

Architecture Design of Motion Estimator and In-Loop Filter for
MPEG-4 AVC/H.264 Encoders,” Proc. IEEE Int’l Symp. Circuits
and Systems, vol.2, 2004, pp.149-152.

[6] Yu-Wen Huang, Tu-Chih Wang, Bing-Yu Hsieh, and Liang-Gee
Chen, “Hardware Architecture Design for Variable Block Size
Motion Estimation in MPEG-4 AVC/JVT/ITU-T H.264,” Proc.
IEEE Int’l Symp. Circuits and Systems, 2003, pp.II-796-II-799.

[7] Tung-Chien Chen, Yu-Wen Huang, and Liang-Gee Chen; “Fully
Utilized and Reusable Architecture for Fractional Motion Estimation
of H.264/AVC,” Proc. IEEE Int’l Conf. Acoustics, Speech, and
Signal Processing, vol.5, 2004, pp.9-12.

[8] H.S. Malvar, A Hallapuro, M. Karczewicz, and Louis Kerosfsky,
“Low Complexity Transform and Quantization in H.264/AVC,”
IEEE Trans. CSVT, vol.13, no.7, pp.598-603.

[9] Tu-Chih Wang, Yu-Wen Huang, Hung-Chi Fang and Liang-Gee
Chen, “Parallel 4x4 2D Transform and Inverse Transform
Architecture for MPEG-4 AVC/H.264,” Proc. IEEE Int’l Symp.
Circuits and Systems, vol.3 2003, pp.800-803.

[10] Yu-Wen Huang, Bing-Yu Hsieh, Tung-Chien Chen, and Liang-
Gee Chen, “Hardware Architecture Design for H.264/AVC Intra
Frame Coder,” Proc. ISCAS, vol.2, 2004, pp.269-272.

[11] Yu-Wen Huang, Bing-Yu Hsieh, Tung-Chien Chen, and L.G
Chen, “Analysis, Fast Algorithm, and VLSI Architecture Design
for H.264/AVC Intra Frame Coder,” IEEE Trans. Circuit and
Systems for Video Technology, vol.15, no.3, Mar. 2005, pp.378-
401.

[12] Tung-Chien Chen, Yu-Wen Huang, and Liang-Gee Chen,
“Analysis and Design of Macroblock Pipelining for H.264/AVC
VLSI Architecture,” Proc. IEEE Int’l Symp. Circuits and Systems,
vol.2, 2004, pp.273-276.

[13] JVT H.264 Reference Software Version JM8.5, ftp://ftp.imtc-
files.org/jvt-ecperts/

[14] T. C. Wang, Y. W. Huang, H. C. Fang, and L.G. Chen, “Performance
Analysis of Hardware Oriented Algorithm Modifications in H.264”
Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal Processing,
Hong-Kong, vol.2, April 2003, pp.493-496.

Kibum Suh received the BS, MS, PhD degrees
in electronics engineering from Hanyang
University in Seoul, Korea in 1989, 1991, and
2000. In 2000, he joined Electronics and
Telecommunications Research Institute (ETRI)
in Daejeon, Korea. He was engaged in the
development of MPEG-4 ASIC design, image

compression algorithms and VLSI architecture for video codecs. He is
currently in the Department of Electronics at Woosong University in
Daejeon, Korea. He is currently engaged in research on H.264 SOC
design, image compression algorithms, and SOC architecture design.

Seongmo Park received the BS and MS
degrees in electronics engineering from
Kyungpook National University, Taegu,
Korea, in 1985 and 1987. From 1987 to 1992,
he was with LG Semiconductor Company,
Gumi, Korea, where he worked on ASIC
design and Mask ROM design. In 1992, he

was with ETRI and joined in the development of ASIC design.
Currently, he is working toward the PhD degree in electronics
engineering from Kyungpook National University, Korea. He is also
engaged in research on SOC design, image compression algorithms,
and SOC architecture design. His main research interests are in video
coding, image compression, and low power SOC architecture design.

Hanjin Cho was born in Seoul, Korea on July
8, 1960. He received the BS degree in electronic
engineering from Hanyang University in 1982.
He received the MS and PhD degrees in
electrical engineering from New Jersey Institute
of Technology in 1987, and from University of
Florida in 1992, respectively. He joined ETRI in

1992, where he currently works in SOC design methodology
development and wireless multimedia SOC design as a project
manager.

