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Abstract. In this study, we investigate the unknown time-dependent heat source func-

tion in inverse problems. We consider three general nonlocal conditions; two classical

boundary conditions and one nonlocal over-determination, condition, these genereate six

different cases. The finite integration method (FIM), based on numerical integration,

has been adapted to solve PDEs, and we use it to discretize the spatial domain; we use

backward differences for the time variable. Since the inverse problem is ill-posed with insta-

bility, we apply regularization to reduce the instability. We use the first-order Tikhonov’s

regularization together with the minimization process to solve the inverse source problem.

Test examples in all six cases are presented in order to illustrate the accuracy and stability

of the numerical solutions.

1. Introduction

Inverse problems are becoming crucial in several applications of physical and
earth sciences, engineering and medicine. In particular, they are used in medical
diagnosis and therapy/thermal equipment. In an inverse problem the goal is to
identify inputs from the outputs of a forward process. The inverse source problem
is a type of inverse problem that focuses on finding the unknown source function in
the system; the source term normally depends on both time and spatial location.
See [2, 7, 9, 14, 15, 17, 20, 22] for recent studies on the inverse source problem.

There are several methods that one uses for inverse problems. Among these
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are the finite difference method (FDM), finite element method (FEM), boundary
element method (BEM), method of fundamental solution (MFS), see [1, 6, 10, 24].
Recently, in [23], Wen et al introduced the finite integration method (FIM) as a
method potentially applicable to PDEs, and it seems this was first used in solving
inverse problesm in [11] and [4]. Lesmana et al. in [11], applied the FIM to solve
the inverse heat source problem under a Neumann boundary conditions together
with given fixed space temperature, and used a direct numerical method to convert
the inverse problem to a forward problem. Whereas Hazanee, in [4], used the
FIM, together with Tikhonov regularization and the minimization technique, for an
inverse heat source problem with a Neumann boundary condition and a nonlocal
over-determination condition.

It is well-known that inverse problems tend to be ill-posed, stable solutions are
not guaranteed. Many methods and techniques for stabilizing the solution have
been tested, such as the Tikhonov’s regularization, truncated singular decomposi-
tion (TSVD), iterative algorithms, variational methods, mollification methods, and
smoothing spline approximation; see [3, 14, 16, 21]. Historically for inverse prob-
lems, the Tikhonov’s regularization is the most popular and successful in stabilizing
the solutions in inverse problems.

In this study, we consider the inverse problem of finding the time-dependent
source function of the heat equation under two classical boundary conditions of
types I, II and III, and one nonlocal over-determination condition. The additional
over-determination condition is needed for the inverse problem, as there are two
unknowns in the system, in order to guarantee existence and uniqueness of the
solution. The FIM is utilized to discretize the space domain, whereas backward
differences are considered for the time domain. The first-order Tikhonov’s regular-
ization based on the minimization of the linear least-squares is employed to stabilize
the numerical solution. Furthermore, numerical examples are assessed to explore
the efficiency of this procedure.

This paper is organized as follows. The statement of six cases of inverse heat
source problems is introduced in the next section. In Section 3, FIM is introduced
and the use of the FIM, with backward differences, to solve the inverse problem
(2.1)-(2.3) is detailed. Section 4 describe how we use Tikhonov regularization to
reduce instability of the solution. In Section 5, numerical examples of the six cases
are simulated and discussed. Finally the study is summarized in Section 6.

2. Problem Statement

An interesting inverse source problem with two general boundary and over-
determination conditions was presented by Ivanchov in [8]. The two general bound-
ary conditions and one over-determination condition which combine to yield six
distinct cases with first-, second- and third-type boundary conditions, are consid-
ered. This inverse problem deals with the identification of both the heat source
𝐹 (𝑥, 𝑡) ∈ 𝐶(𝐷𝑇 ) and the temperature 𝑢(𝑥, 𝑡) ∈ 𝐶2,1(𝐷𝑇 ) ∩ 𝐶1,0(𝐷𝑇 ) for 𝐿 > 0, 𝑇 > 0
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and 𝐷𝑇 = (0, 𝐿) × (0, 𝑇 ). The inverse problem statement is as follows,

(2.1) 𝑢𝑡 (𝑥, 𝑡) = 𝑢𝑥𝑥 (𝑥, 𝑡) + 𝐹 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ 𝐷𝑇 ,

subject to the initial condition,

(2.2) 𝑢 (𝑥, 0) = 𝜑(𝑥), 𝑥 ∈ [0, 𝐿],

and the following boundary and over-determination conditions,

(2.3)

⎧

⎪

⎨

⎪

⎩

𝛾11 (𝑡) 𝑢 (0, 𝑡) + 𝛾12 (𝑡) 𝑢 (𝐿, 𝑡) + 𝛾13 (𝑡) 𝑢𝑥 (0, 𝑡) + 𝛾14 (𝑡) 𝑢𝑥 (𝐿, 𝑡) = 𝑘1 (𝑡) ,
𝛾21 (𝑡) 𝑢 (0, 𝑡) + 𝛾22 (𝑡) 𝑢 (𝐿, 𝑡) + 𝛾23 (𝑡) 𝑢𝑥 (0, 𝑡) + 𝛾24 (𝑡) 𝑢𝑥 (𝐿, 𝑡) = 𝑘2 (𝑡) ,
𝛾31 (𝑡) 𝑢 (0, 𝑡) + 𝛾32 (𝑡) 𝑢 (𝐿, 𝑡) + 𝛾33 (𝑡) 𝑢𝑥 (0, 𝑡) + 𝛾34 (𝑡) 𝑢𝑥 (𝐿, 𝑡) = 𝑘3 (𝑡) ,

where 𝑡 ∈ [0, 𝑇 ] , 𝜑(𝑥) ∈ 𝐶2[0, 𝐿] and 𝑘𝑖(𝑡) ∈ 𝐶1[0, 𝑇 ] are given functions, and the
matrix 𝛾 = (𝛾𝑖𝑗) ∈ 𝐶1[0, 𝑇 ] has rank 3 for 𝑡 ∈ [0, 𝑇 ], 𝑖 ∈ {1, 2, 3} and 𝑗 ∈ {1, 2, 3, 4}.
By assuming, without loss of generality, the same third-order minor of the matrix
𝛾 is non-zero and can state three of the four boundary data 𝑢(0, 𝑡), 𝑢(𝐿, 𝑡), 𝑢𝑥(0, 𝑡)
and 𝑢𝑥(𝐿, 𝑡) in terms of the fourth one, the following six cases arise.

Case 1:

(2.4) 𝑢𝑥 (0, 𝑡) = 𝜇1 (𝑡) , 𝑢𝑥 (𝐿, 𝑡) = 𝜇2 (𝑡) ,

(2.5) 𝑣1 (𝑡) 𝑢 (0, 𝑡) + 𝑣2 (𝑡) 𝑢 (𝐿, 𝑡) = 𝑘 (𝑡) ,

Case 2:

(2.6) 𝑢 (0, 𝑡) = 𝜇1 (𝑡) , 𝑢𝑥 (𝐿, 𝑡) = 𝜇2 (𝑡) ,

(2.7) 𝑣1 (𝑡) 𝑢𝑥 (0, 𝑡) + 𝑣2 (𝑡) 𝑢 (𝐿, 𝑡) = 𝑘 (𝑡) ,

Case 3:

(2.8) 𝑢 (0, 𝑡) = 𝜇1 (𝑡) , 𝑢 (𝐿, 𝑡) = 𝜇2 (𝑡) ,

(2.9) 𝑣1 (𝑡) 𝑢𝑥 (0, 𝑡) + 𝑣2 (𝑡) 𝑢𝑥 (𝐿, 𝑡) = 𝑘 (𝑡) ,

Case 4:

(2.10) 𝑢 (0, 𝑡) = 𝜇1 (𝑡) , 𝑢𝑥 (𝐿, 𝑡) + 𝑣1(𝑡)𝑢(𝐿, 𝑡) = 𝜇2 (𝑡) ,

(2.11) 𝑢𝑥 (0, 𝑡) + 𝑣2 (𝑡) 𝑢𝑥 (𝐿, 𝑡) = 𝑘 (𝑡) ,
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Case 5:

(2.12) 𝑢𝑥 (0, 𝑡) = 𝜇1 (𝑡) , 𝑢𝑥 (𝐿, 𝑡) + 𝑣1(𝑡)𝑢(𝐿, 𝑡) =𝜇2 (𝑡) ,

(2.13) 𝑢 (0, 𝑡) + 𝑣2 (𝑡) 𝑢 (𝐿, 𝑡) = 𝑘 (𝑡) ,

Case 6:

(2.14) 𝑢𝑥 (0, 𝑡) − 𝑣1 (𝑡) 𝑢 (0, 𝑡) = 𝜇1 (𝑡) , 𝑢𝑥 (𝐿, 𝑡) + 𝑣2(𝑡)𝑢(𝐿, 𝑡) =𝜇2 (𝑡) ,

(2.15) 𝑣3(𝑡)𝑢 (0, 𝑡) + 𝑣4 (𝑡) 𝑢 (𝐿, 𝑡) = 𝑘 (𝑡) , 𝑡∈[0,𝑇 ],

where 𝑣1 (𝑡) , 𝑣2 (𝑡) , 𝑣3 (𝑡) , 𝑣4 (𝑡) , 𝜇1 (𝑡) , 𝜇2 (𝑡) , 𝑘 (𝑡) ∈ 𝐶1[0, 𝑇 ] are given functions.
The other cases can be reduced to these ones by the change 𝑦 = ℎ − 𝑥. In these
six cases, it can be seen that the first two conditions of each case are general type
boundary conditions: Case 1 is the Neumann conditions, Case 3 is the Dirichlet
conditions, and the other cases are Robin conditions. In Cases 1- 6, we assume that
𝑣21(𝑡) + 𝑣22(𝑡) > 0, 𝑡 ∈ [0, 𝑇 ].

When the source function 𝐹 (𝑥, 𝑡) of Eq. (2.1) is given, the problem of finding
only 𝑢 (𝑥, 𝑡) from the initial boundary value problem is called the direct problem
or forward problem, whereas in the case of an unknown source function 𝐹 (𝑥, 𝑡)
it is called the indirect problem or the inverse problem. In this study, we repre-
sent the unknown function as 𝐹 (𝑥, 𝑡) ∶= 𝑟 (𝑡) 𝑓 (𝑥, 𝑡) + ℎ(𝑥, 𝑡) where the functions
𝑓 (𝑥, 𝑡) , ℎ(𝑥, 𝑡) ∈ 𝐶1,0(𝐷𝑇 ) are given and 𝑟(𝑡) ∈ 𝐶[0, 𝑇 ] is unknown. Actually, this
inverse problem (2.1)-(2.3) was assessed for existence and uniqueness of the solution
(without numerical methods) by Ivanchov in [8].

Therefore in our study, we propose to identify the pair solution (𝑟 (𝑡) , 𝑢 (𝑥, 𝑡)) by
using the FIM to discretize the space domain while using backward differences in
the time domain. Actually, Hazanee and Lesnic in [5], studied these six cases of the
inverse problem (2.1)-(2.3) numerically using BEM as the discretization tool. They
also employed Tikhonov’s regularization of orders zero, one and two, and found that
the BEM together with Tikhonov’s regularization was capable of providing stable
and accurate results. However the BEM formulations give rise to a nonsymmetric
fully populated matrix, and the coding for BEM is complicated. Hence, the aim
of this study is to use the FIM for finding the time-dependent of heat source by
solving the inverse problem (2.1)-(2.3), since the matrix in FIM is comparatively
simple to generate and is triangular.

3. Finite Integration Method

Recently, in [23], Wen et al. revised a numerical method with potential applica-
bility to solve PDEs, namely the finite integration method (FIM). FIM has been ap-
plied to one- and multi-dimensional partial differential equations, see [12, 13, 23, 25].
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In this method, first take 𝑛-layer integrals over the 𝑛𝑡ℎ order PDE in order to obtain
the solution by numerical integration. Many numerical integration methods have
been studied, such as trapezoid rule, Simpson’s rule, Newton-Cotes formulas, and
Lagrange formulas. Among various numerical integration techniques adapted to
FIM, it seems that the trapezoid rule is the simplest alternative to choose. Looking
more closely at the use of trapezoid rule in FIM, it performs ordinary linear approx-
imation (OLA) and makes the integration matrix obtained after taking integration
over the system to be a lower triangular matrix. This is an advantage of using
FIM based on OLA, denoted as FIM(OLA), since systems of linear equations with
triangular matrix can be solved more quickly and with less memory, than general
systems.

To introduce FIM(OLA), we first consider the approximate integration of a
one-dimensional function by FIM(OLA), based on the trapezoid rule, as

(3.1) ∫

𝐿

0
𝑢 (𝑥)𝑑𝑥 = Δ𝑥

(𝑢0
2

+ 𝑢1 +…+ 𝑢𝑁−1 +
𝑢𝑁
2

)

,

where 𝑢𝑖 = 𝑢(𝑥𝑖), 𝑥 ∈ {0 = 𝑥0, 𝑥1, 𝑥2,… , 𝑥𝑁 = 𝐿} and Δ𝑥 = 𝐿
𝑁 . Then we ap-

proximate the discretised temperature as 𝑈 (1) = 𝐴𝑢 where 𝑢 =
[

𝑢0, 𝑢1,…, 𝑢𝑁
]𝑇
,

𝑈 (1) =
[

∫ 𝑥0
𝑥0

𝑢 (𝑥)𝑑𝑥, ∫ 𝑥1
𝑥0

𝑢 (𝑥)𝑑𝑥,…, ∫ 𝑥𝑁
𝑥0

𝑢 (𝑥)𝑑𝑥
]𝑇

and

𝐴 = 𝐿
𝑁

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 ⋯ 0

1
2

1
2

0 0 ⋯ 0

1
2

1 1
2

0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

1
2

1 1 1 ⋯
1
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠(𝑁+1)×(𝑁+1)

Whereas for 𝑛 iterated integrals, the approximation 𝑈 (𝑛) can be formed as 𝑈 (𝑛) =
𝐴𝑛𝑢, see Wen et al. in [23].

Another advantage of using FIM(OLA) is to computing the 𝑛𝑡ℎ power of 𝐴; 𝐴𝑛,
which approximate 𝑛-fold iterated integration, 𝐴(𝑛). This means that solving an 𝑛𝑡ℎ
order differential equation utilises only one lower triangular integral matrix. Fur-
thermore, the FIM can be applied to solve ordinary differential equations (ODEs)
and PDEs whether they are time-dependent or not.

3.1. FIM for solving inverse problem

This subsection describes the use of FIM together with backward differences in
order to solve the inverse problem (2.1)-(2.3). We first discretize time and space
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domains to 𝑀 and 𝑁 subintervals, respectively, as 𝑡 ∈ {0 = 𝑡0, 𝑡1,… , 𝑡𝑀 = 𝑇 } and
𝑥 ∈ {0 = 𝑥0, 𝑥1,… , 𝑥𝑁 = 𝐿}. The backward differences approximate the first order
derivative as

(3.2) 𝑢𝑡
(

𝑥, 𝑡𝑗
)

=
𝑢
(

𝑥, 𝑡𝑗
)

− 𝑢(𝑥, 𝑡𝑗−1)
𝑇 ∕𝑀

, 𝑗 ∈ 1, 2,… ,𝑀.

Here we denote the discrete temperature and source functions as 𝑢𝑗 (𝑥) ∶= 𝑢(𝑥, 𝑡𝑗),
𝑓𝑗 (𝑥) ∶= 𝑓 (𝑥, 𝑡𝑗), ℎ𝑗 (𝑥) ∶= ℎ

(

𝑥, 𝑡𝑗
)

, 𝑟𝑗 ∶= 𝑟(𝑡𝑗), for 𝑖 ∈ {0, 1, 2,… ,𝑀}. Therefore
the time-discretized form of the heat equation in Eq. (2.1) becomes

(3.3)
𝑀
𝑇

(

𝑢𝑗 (𝑥) − 𝑢𝑗−1 (𝑥)
)

=
𝜕2𝑢𝑗
𝜕𝑥2

(𝑥) + 𝑟𝑗𝑓𝑗 (𝑥) + ℎ𝑗 (𝑥) .

On using FIM, we integrate with respect to 𝑥 on both sides and approximate the
integrals by the matrix approximation introduced earlier. We obtain

(3.4)
𝑀
𝑇

(

𝐴𝑢𝑗 − 𝐴𝑢𝑗−1
)

= 𝑢𝑥,𝑗 + 𝑟𝑗𝐴𝑓 𝑗
+ 𝐴ℎ𝑗 + 𝑐0𝑖,

where 𝑐0 is an integration constant corresponding to the Eq. (3.4) and 𝑖 =
[1, 1, 1,… , 1]𝑇 is 𝑁 + 1 column vector. Consider now integrating twice with re-
spect to 𝑥 on both sides, and Eq. (3.4) yields

(3.5)
𝑀
𝑇

(

𝐴2𝑢𝑗 − 𝐴2𝑢𝑗−1
)

= 𝑢𝑗 + 𝑟𝑗𝐴
2𝑓

𝑗
+ 𝐴2ℎ𝑗 + 𝑐0𝑥 + 𝑐1𝑖,

where 𝑥 = [𝑥0, 𝑥1, 𝑥2,… , 𝑥𝑁 ]𝑇 is 𝑁 + 1 column vector of space nodes and 𝑐0, 𝑐1 are
integration constants corresponding to the Eq. (3.5). Rearranging this gives

(3.6)
(𝑀
𝑇

𝐴2 − 𝐼
)

𝑢𝑗 − 𝑐0𝑥 − 𝑐1𝑖 =
𝑀
𝑇

𝐴2𝑢𝑗−1 + 𝑟𝑗𝐴
2𝑓

𝑗
+ 𝐴2ℎ𝑗 .

The solutions of the inverse problem (2.1)-(2.3) with the distinct boundary and
over-determination conditions from (2.3) separated to the six cases shown in (2.4)-
(2.15), can be discretized as follows.

Case 1:

(3.7) 𝑢𝑥,𝑗 (0) = 𝜇1𝑗 , 𝑢𝑥,𝑗 (𝐿) = 𝜇2𝑗 ,

(3.8) 𝑣1𝑗𝑢𝑗 (0) + 𝑣2𝑗𝑢𝑗 (𝐿) = 𝑘𝑗 ,

Case 2:

(3.9) 𝑢𝑗 (0) = 𝜇1𝑗 , 𝑢𝑥,𝑗 (𝐿) = 𝜇2𝑗 ,

(3.10) 𝑣1𝑗𝑢𝑥,𝑗 (0) + 𝑣2𝑗𝑢𝑗 (𝐿) = 𝑘𝑗 ,
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Case 3:

(3.11) 𝑢𝑗 (0) = 𝜇1𝑗 , 𝑢𝑗 (𝐿) = 𝜇2𝑗 ,

(3.12) 𝑣1𝑗𝑢𝑥,𝑗 (0) + 𝑣2𝑗𝑢𝑥,𝑗 (𝐿) = 𝑘𝑗 ,

Case 4:

(3.13) 𝑢𝑗 (0) = 𝜇1𝑗 , 𝑢𝑥,𝑗 (𝐿) + 𝑣1𝑗𝑢𝑗(𝐿) =𝜇2𝑗 ,

(3.14) 𝑢𝑥,𝑗 (0) + 𝑣2𝑗𝑢𝑥,𝑗 (𝐿) = 𝑘𝑗 ,

Case 5:

(3.15) 𝑢𝑥,𝑗 (0) = 𝜇1𝑗 , 𝑢𝑥,𝑗 (𝐿) + 𝑣1,𝑗𝑢𝑗(𝐿) =𝜇2𝑗 ,

(3.16) 𝑢𝑗 (0) + 𝑣2𝑗𝑢𝑗 (𝐿) = 𝑘𝑗 ,

Case 6:

(3.17) 𝑢𝑥,𝑗 (0) − 𝑣1,𝑗𝑢𝑗 (0) = 𝜇1𝑗 , 𝑢𝑥,𝑗 (𝐿) + 𝑣2,𝑗𝑢𝑗(𝐿) = 𝜇2𝑗 ,

(3.18) 𝑣3𝑗𝑢𝑗 (0) + 𝑣4𝑗𝑢𝑗 (𝐿) = 𝑘𝑗 ,

by denoting 𝜇1𝑗 ∶= 𝜇1
(

𝑡𝑗
)

, 𝜇2𝑗 ∶= 𝜇2
(

𝑡𝑗
)

, 𝑣1𝑗 ∶= 𝑣1(𝑡𝑗), 𝑣2𝑗 ∶= 𝑣2(𝑡𝑗) and 𝑘𝑗 ∶=
𝑘(𝑡𝑗). Considering the approximate integral Eq. (3.4) with discretized boundary
conditions (3.7), (3.9), (3.11), (3.13), (3.15), (3.17) for cases 1-6, respectively, each
case gives the matrix equation written in general form as

(3.19)
⎡

⎢

⎢

⎣

𝑀
𝑇 𝐴2 − 𝐼 −𝑥 −𝑖
[∗∗∗] ∗ ∗
[∗∗∗] ∗ ∗

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑢𝑗
𝑐0
𝑐1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑀
𝑇 𝐴2𝑢𝑗−1 + 𝑟𝑗𝐴2𝑓

𝑗
+ 𝐴2ℎ𝑗

−𝜇1𝑗
∗

⎤

⎥

⎥

⎥

⎦

where ∗ depends on boundary conditions for each cases.
At this point, if we were considering the direct problem, the temperature 𝑢(𝑥, 𝑡)

can be approximated by solving the system of linear equations (3.19) using the
initial condition (2.2). When 𝑗 = 1, the temperature 𝑢1 is calculated using known
𝑢0 given by the initial condition. Then at the time step 𝑗, for 𝑗 ∈ {1, 2,… ,𝑀}, the
temperature 𝑢𝑗 can be calculated by using the known temperature 𝑢𝑗−1 given from

the previous time step.
For the inverse problem the heat source function 𝑟(𝑡) is unknown. The over-

determination conditions (3.8), (3.10), (3.12), (3.14), (3.16), (3.18) for cases 1-6,
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respectively, need to be used together with minimizing the linear least-squares as
the objective function,

(3.20) Γ (𝑟) ∶=
𝑀
∑

𝑗=0

[(

𝛾𝑗𝑢𝑗(∗) + 𝛾𝑗𝑢𝑥,𝑗(∗)
)

− 𝑘𝑗
]2 ,

where 𝛾𝑗𝑢𝑗 (∗) + 𝛾𝑗𝑢𝑥,𝑗 (∗) is the time-discretized over-determination condition corre-
sponding to the objective functions for each cases. Here, the boundary temperatures
𝑢𝑗 (0) and 𝑢𝑗 (𝐿) can be approximated by solving the system of linear equations (3.19)

with an initial guess of the heat source function 𝑟(0)𝑗 ∶= 𝑟(0)
(

𝑡𝑗
)

to be prescribed,

whereas the flux 𝑢𝑥,𝑗 (0) and 𝑢𝑥,𝑗 (𝐿) can be obtained by considering (3.4) at 𝑥 = 0
and 𝑥 = 𝐿.

As the above overall consideration, the solution 𝑟(𝑡𝑗) of Cases 1-6 can be approx-
imated by solving the matrix equation in Eq. (3.19) and minimizing the objective
function (3.20) with following matrix equations and objective functions of each
cases, Γ1 − Γ6, as
Case 1:

(3.21) Γ1 (𝑟) ∶=
𝑀
∑

𝑗=0

[

𝑣1𝑗𝑢𝑗 (0) + 𝑣2𝑗𝑢𝑗 (𝐿) − 𝑘𝑗
]2,

⎡

⎢

⎢

⎢

⎣

𝑀
𝑇 𝐴2 − 𝐼 −𝑥 −𝑖

0 1 0
𝑀
𝑇 𝐴𝑁 −1 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑢𝑗
𝑐0
𝑐1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑀
𝑇 𝐴2𝑢𝑗−1 + 𝑟𝑗𝐴2𝑓

𝑗
+ 𝐴2ℎ𝑗

−𝜇1𝑗
𝜇2𝑗 +

𝑀
𝑇 𝐴𝑁𝑢𝑗−1 + 𝑟𝑗𝐴𝑁𝑓

𝑗
+ 𝐴𝑁ℎ𝑗

⎤

⎥

⎥

⎥

⎦

,

Case 2:

(3.22) Γ2 (𝑟) ∶=
𝑀
∑

𝑗=0

[

𝑣1𝑗𝑢𝑥,𝑗 (0) + 𝑣2𝑗𝑢𝑗 (𝐿) − 𝑘𝑗
]2,

⎡

⎢

⎢

⎢

⎣

𝑀
𝑇 𝐴2 − 𝐼 −𝑥 −𝑖

0 0 1
𝑀
𝑇 𝐴𝑁 −1 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑢𝑗
𝑐0
𝑐1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑀
𝑇 𝐴2𝑢𝑗−1 + 𝑟𝑗𝐴2𝑓

𝑗
+ 𝐴2ℎ𝑗

−𝜇1𝑗
𝜇2𝑗 +

𝑀
𝑇 𝐴𝑁𝑢𝑗−1 + 𝑟𝑗𝐴𝑁𝑓

𝑗
+ 𝐴𝑁ℎ𝑗

⎤

⎥

⎥

⎥

⎦

,

Case 3:

(3.23) Γ3 (𝑟) ∶=
𝑀
∑

𝑗=0

[

𝑣1𝑗𝑢𝑥,𝑗 (0) + 𝑣2𝑗𝑢𝑥,𝑗 (𝐿) − 𝑘𝑗
]2,

⎡

⎢

⎢

⎢

⎣

𝑀
𝑇 𝐴2 − 𝐼 −𝑥 −𝑖

0 0 1
𝑀
𝑇 𝐴(2)

𝑁 −𝐿 −1

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑢𝑗
𝑐0
𝑐1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑀
𝑇 𝐴2𝑢𝑗−1 + 𝑟𝑗𝐴2𝑓

𝑗
+ 𝐴2ℎ𝑗

−𝜇1𝑗
𝜇2𝑗 +

𝑀
𝑇 𝐴(2)

𝑁 𝑢𝑗−1 + 𝑟𝑗𝐴
(2)
𝑁 𝑓

𝑗
+ 𝐴(2)

𝑁 ℎ𝑗

⎤

⎥

⎥

⎥

⎦

,
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Case 4:

(3.24) Γ4 (𝑟) ∶=
𝑀
∑

𝑗=0

[

𝑢𝑥,𝑗 (0) + 𝑣2𝑗𝑢𝑥,𝑗 (𝐿) − 𝑘𝑗
]2,

⎡

⎢

⎢

⎢

⎣

𝑀
𝑇 𝐴2 − 𝐼 −𝑥 −𝑖

0 0 1
𝑀
𝑇 𝐴𝑁 + 𝑉 (𝐿)

1𝑗 −1 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑢𝑗
𝑐0
𝑐1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑀
𝑇 𝐴2𝑢𝑗−1 + 𝑟𝑗𝐴2𝑓

𝑗
+ 𝐴2ℎ𝑗

−𝜇1𝑗
𝜇2𝑗 +

𝑀
𝑇 𝐴𝑁𝑢𝑗−1 + 𝑟𝑗𝐴𝑁𝑓

𝑗
+ 𝐴𝑁ℎ𝑗

⎤

⎥

⎥

⎥

⎦

,

Case 5:

(3.25) Γ5 (𝑟) ∶=
𝑀
∑

𝑗=0

[

𝑢𝑗 (0) + 𝑣2𝑗𝑢𝑗 (𝐿) − 𝑘𝑗
]2,

⎡

⎢

⎢

⎢

⎣

𝑀
𝑇 𝐴2 − 𝐼 −𝑥 −𝑖

0 1 0
𝑀
𝑇 𝐴𝑁 + 𝑉 (𝐿)

1𝑗 −1 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑢𝑗
𝑐0
𝑐1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑀
𝑇 𝐴2𝑢𝑗−1 + 𝑟𝑗𝐴2𝑓

𝑗
+ 𝐴2ℎ𝑗

−𝜇1𝑗
𝜇2𝑗 +

𝑀
𝑇 𝐴𝑁𝑢𝑗−1 + 𝑟𝑗𝐴𝑁𝑓

𝑗
+ 𝐴𝑁ℎ𝑗

⎤

⎥

⎥

⎥

⎦

,

Case 6:

(3.26) Γ6 (𝑟) ∶=
𝑀
∑

𝑗=0

[

𝑣3𝑗𝑢𝑗 (0) + 𝑣4𝑗𝑢𝑗 (𝐿) − 𝑘𝑗
]2,

⎡

⎢

⎢

⎢

⎣

𝑀
𝑇 𝐴2 − 𝐼 −𝑥 −𝑖
𝑉 (0)

1𝑗 1 0
𝑀
𝑇 𝐴𝑁 + 𝑉 (𝐿)

2𝑗 −1 0

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑢𝑗
𝑐0
𝑐1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑀
𝑇 𝐴2𝑢𝑗−1 + 𝑟𝑗𝐴2𝑓

𝑗
+ 𝐴2ℎ𝑗

−𝜇1𝑗
𝜇2𝑗 +

𝑀
𝑇 𝐴𝑁𝑢𝑗−1 + 𝑟𝑗𝐴𝑁𝑓

𝑗
+ 𝐴𝑁ℎ𝑗

⎤

⎥

⎥

⎥

⎦

,

where 𝐴𝑁 =
[

𝑎𝑁0, 𝑎𝑁1, 𝑎𝑁2,… , 𝑎𝑁𝑁
]

is an 𝑁 + 1 row vector and 𝑎𝑁𝑖 is an element

of the 𝑁 𝑡ℎ-row of the matrix 𝐴, 𝐴(2)
𝑁 =

[

𝑎(2)𝑁0, 𝑎
(2)
𝑁1, 𝑎

(2)
𝑁2,… , 𝑎(2)𝑁𝑁

]

is an 𝑁 + 1 row

vector and 𝑎(2)𝑁𝑖 is an element of the 𝑁 𝑡ℎ-row of integration matrix 𝐴2 = 𝐴 ×𝐴, and
𝑉 (𝐿)

1𝑗 =
[

0, 0, 0,… , 0, 𝑣1𝑗
]

, 𝑉 (0)
2𝑗 =

[

𝑣2𝑗 , 0, 0,… , 0
]

are 𝑁 + 1 row vectors.

4. Regularization

The inverse heat source problem (2.1)-(2.3) is ill-posed, so that small errors
in input data result in large errors in the numerical solution. In this study,
noises/contaminations of the input data are added randomly to 𝑘(𝑡) in the over-
determination condition,

(4.1) 𝑘𝜀 = 𝑘 + 𝜀,
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where 𝑘 =
[

𝑘0, 𝑘1, 𝑘2,… , 𝑘𝑁
]𝑇
, 𝑘𝜀 is a vector of contaminated input data, and 𝜀 is a

vector of noisy input randomized by Gaussian normal distribution with mean 0 and

standard deviation 𝜎 and defined by 𝜎 = 𝑝 × 𝑚𝑎𝑥𝑗
|

|

|

𝑘(𝑡𝑗)
|

|

|

where 𝑝 is the percentage

of noise to be added. Therefore the objective function is perturbed as

(4.2) Γ𝜖(𝑟) =
𝑀
∑

𝑗=0

[

(

𝛾𝑗𝑢𝑗(∗) + 𝛾𝑗𝑢𝑥,𝑗(∗)
)

− 𝑘𝜀𝑗
]2

.

When there are errors in the input data, the results from inverse problem diverge.
In order to stabilize the solution, the first-order Tikhonov regularization is added
to the perturbed objective function (3.20) as

(4.3) Γ𝜀
(

𝑟𝜆
)

=
𝑀
∑

𝑗=0

[

(

𝛾𝑗𝑢𝑗(∗) + 𝛾𝑗𝑢𝑥,𝑗(∗)
)

− 𝑘𝜀𝑗
]2

+ 𝜆
𝑀
∑

𝑗=1

[ 𝑇
𝑀+1

(

𝑟𝑗 − 𝑟𝑗−1
)

]2
,

where 𝜆 > 0 is a regularization parameter to be prescribed. Note that the term

of 𝜆
∑𝑀

𝑗=1

[

𝑇
𝑀+1

(

𝑟𝑗 − 𝑟𝑗−1
)

]2
in (4.3) is called the regularization term, and when

no regularization is imposed, 𝜆 = 0, the objective function (4.3) becomes (3.20).
The regularized objective function (4.3) has the first-order Tikhonov regularization
because the first-order derivative is applied in the regularization term with function
𝑟, see [19]. We used the fminunc routine from MATLAB Optimization toolbox for
calculating the objective function (4.3) with default tolerance setting as 𝑇 𝑜𝑙𝐹𝑢𝑛 =
10−6 and 𝑀𝑎𝑥𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 = 1.01 × 10−4.

Hence for all the six cases, a stable pair solution
(

𝑟(𝑡𝑗), 𝑢(𝑥𝑖, 𝑡𝑗)
)

of the inverse
problem (2.1)-(2.3) can now be found by solving the matrix equation (3.19) and
minimizing the regularized objective function (4.3).

5. Numerical Examples

In order to analyze the accuracy of the source function 𝑟(𝑡) of inverse problem
(2.1)-(2.3), produced by applying FIM(OLA) together with backward difference
and stabilizing the solution by using Tikhonov regularization as detailed earlier in
Sections 3 and 4, let us introduce the root mean square error (RMSE) defined as

RMSE(𝑢) =
√

𝐿
𝑁 + 1

∑

𝑖
(𝐸𝑥𝑎𝑐𝑡

(

𝑥𝑖
)

− 𝐴𝑝𝑝𝑟𝑜𝑥(𝑥𝑖))2,

RMSE(𝑟) =
√

𝑇
𝑀 + 1

∑

𝑗
(𝐸𝑥𝑎𝑐𝑡(𝑡𝑗) − 𝐴𝑝𝑝𝑟𝑜𝑥(𝑡𝑗))

2,

where 𝐸𝑥𝑎𝑐𝑡
(

𝑥𝑖
)

and 𝐴𝑝𝑝𝑟𝑜𝑥
(

𝑥𝑖
)

represent the analytical and numerical solutions

of 𝑢(𝑥𝑖, 1), respectively, whereas 𝐸𝑥𝑎𝑐𝑡
(

𝑡𝑗
)

and 𝐴𝑝𝑝𝑟𝑜𝑥
(

𝑡𝑗
)

represent the analytical
and numerical solutions of 𝑟(𝑡𝑗), respectively.
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For numerical example, we consider a test example as appeared in [4] and [5]
for the inverse source problem (2.1)-(2.3) with boundary and over-determination
conditions for 6 cases as shown in (2.4)-(2.15) with 𝑇 = 1, 𝐿 = 1, 𝑢(𝑥, 0) = 𝜑(𝑥) =
1 + 𝑥 − 𝑥2, 𝑓 (𝑥, 𝑡) =

(

1−𝑥2
)

𝑒−𝑡, and ℎ (𝑥, 𝑡) = (2+𝑥) 𝑒𝑡. The boundary and over-
determination conditions given in each case are as follows,

Case 1:

(5.1) 𝑢𝑥(0, 𝑡) = 𝑒𝑡, 𝑢𝑥(1, 𝑡) = −𝑒𝑡, 𝑢(0, 𝑡) + 𝑢(1, 𝑡) = 2𝑒𝑡,

Case 2:

(5.2) 𝑢(0, 𝑡) = 𝑒𝑡, 𝑢𝑥(1, 𝑡) = −𝑒𝑡, 𝑢𝑥(0, 𝑡) + 𝑢(1, 𝑡) = 2𝑒𝑡,

Case 3:

(5.3) 𝑢(0, 𝑡) = 𝑒𝑡, 𝑢(1, 𝑡) = 𝑒𝑡, 𝑒𝑡𝑢𝑥(0, 𝑡) + 𝑡𝑢𝑥(1, 𝑡) = (𝑒𝑡 − 𝑡)𝑒𝑡,

Case 4:

(5.4) 𝑢 (0, 𝑡) = 𝑒𝑡, 𝑢𝑥 (1,𝑡) + (1+𝑡) 𝑢 (1,𝑡) = 𝑡𝑒𝑡, 𝑢𝑥 (0, 𝑡) + 𝑒−𝑡𝑢𝑥 (1,𝑡) = 𝑒𝑡 − 1,

Case 5:

(5.5) 𝑢𝑥 (0, 𝑡) = 𝑒𝑡, 𝑢𝑥 (1,𝑡) + 𝑒𝑡𝑢 (1,𝑡) = 1−𝑒𝑡, 𝑢 (0, 𝑡) + (1+𝑡) 𝑢 (1,𝑡) = (2+𝑡) 𝑒𝑡,

Case 6:

(5.6)
𝑢𝑥 (0, 𝑡) − 𝑒𝑡𝑢 (0, 𝑡) = 𝑒𝑡 − 𝑒2𝑡, 𝑢𝑥 (1,𝑡) + (1+𝑡) 𝑢 (1,𝑡) = 𝑡𝑒𝑡,

𝑡𝑢 (0, 𝑡) + (1−𝑡) 𝑢 (1,𝑡) = 𝑒𝑡,

for 𝑥 ∈ (0, 1) and 𝑡 ∈ (0, 𝑇 ). The RMSE for these examples uses the analytical
solutions as 𝑢 (𝑥, 𝑡) =

(

1+𝑥 − 𝑥2
)

𝑒𝑡 and 𝑟 (𝑡) = 𝑒2𝑡 . Note that these examples have
been checked for existence and uniqueness of solution for the inverse problem (2.1)-
(2.3) corresponding to theorems shown in [8].

The direct problem of Case 1 with above input data has been considered with
𝑀,𝑁 ∈ {20, 40, 60, 80, 100} and it was found that 𝑀 = 100 with various 𝑁 gives
sufficient accuracy. Here we decided to use 𝑀 = 100, 𝑁 = 20 and the RMSE(𝑢) of
six cases are shown in Table 1.

Case 1 2 3 4 5 6

RMSE(𝑢) 1.004E-2 3.999E-3 1.318E-3 2.408E-3 8.423E-3 3.887E-3

Table 1: RMSEs of 𝑢 (𝑥, 1) for the direct problem obtained by 𝑀 = 100 and
𝑁 = 20 of Cases 1-6.

In what follows, the node counts 𝑀 = 100 and 𝑁 = 20 are used and the initial
guess of the source function is set to zero, i.e. 𝑟(0) = 0.
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5.1. Case of exact input data

For the numerical results, we first consider the case of exact data, no noise
inputs to the system, and found that the results can be analysed as follows.

Cases 1, 2 and 5

The approximate solution 𝑟(𝑡𝑗) in Case 1 with no contamination obtained by
solving matrix equation (3.19) and minimizing the objective function (3.20), i.e.
Γ1 (𝑟), is shown in Figure 1 it is obviously to see that the approximate solution
showing in dash-cross line (−×) converged to the analytical solution showing in
solid line (−) but slightly deviated at 𝑡 = 0 and 𝑡 ∈ (0.8, 1] with RMSE(𝑟)=3.928E-
1. One thing to remark that at the starting point 𝑡 = 0 the result is imprecision
because the initial guess is zero 𝑟(0) = 0. Note that the computation setting as
default tolerance which let the solver stop various states depending on the reach of
tolerance set. In order to reduce the accuracy happened, the regularized objective
function Γ𝜀

(

𝑟𝜆
)

in (4.3) needs to be employed. The trial and error technique was

used to find a suitable regularization parameter from 10−9 to 10+2, i.e. testing
𝜆 ∈ {10−9, 10−8,… , 10+2}, and 𝜆 = 10−5 has been found to be the most appropriate
regularization parameter. This gives the more stable result as shown in Figure 1
with circles line (◦◦◦) and RMSE(𝑟)=2.985E-1.

Figure 1: The solution of 𝑟(𝑡) obtained by minimizing the objective function
Γ1

(

𝑟𝜆
)

without noisy input and 𝜆 ∈ {0, 10−5} obtained by 𝑀 = 100 and
𝑁 = 20, for Case 1.

Note that the slight inaccuracy displayed in circle line around the end point is
commonly obtained with the use of regularization or stabilizing techniques such as
the mollification method, or Tikhonov regularization of a Fredholm integral equation
as presented in detail in [18].
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As we have tested, without illustration shown, we found that the approximate
solution in Cases 2 and 5 without regularization displayed similar to Case 1, and
the use of regularization can be reduced the inaccuracy occurred as can be seen by
RMSE(𝑟) detailed in Table 2.

Case 1 2 3 4 5 6

RMSE(𝑟); 𝜆 = 0 3.928E-1 1.050E-1 1.027E-1 1.039E-1 3.379E-1 1.231E-1

RMSE(𝑟); 𝜆 = 10−5 2.985E-1 1.023E-1 6.350E-2 1.527E-1 2.644E-1 4.861E-1

Table 2: RMSEs of the source function 𝑟(𝑡) for the inverse problem with no
noisy input and 𝜆 ∈ {0, 10−5}, for Cases 1-6.

Cases 3-4 and 6

In Case 3, the result 𝑟(𝑡) obtained by minimizing the objective function Γ3 (𝑟)
for the case without noisy input data and no regularization, is illustrated in Figure
2 showing good agreement of exact (−) and numerical (−×) solutions, except at time
𝑡 = 0, with RMSE (𝑟)=1.027E-1. We further consider the solution of this case using
regularization with 𝜆 = 10−5 as it was sought to be the most suitable regularization
parameter among 𝜆 ∈ {10−9, 10−8,… , 10+2}, and found that the regularized numer-
ical solution with RMSE(𝑟)=6.350E-2 behaves well at 𝑡 = 0 but slight inaccuracies
near 𝑡 = 1 as displayed in Figure 2 with circle line (◦◦◦).

Figure 2: The solution of 𝑟(𝑡) obtained by minimizing the objective function
Γ3

(

𝑟𝜆
)

with no noisy input obtained by 𝑀 = 100 and 𝑁 = 20, for Case 3.

Looking more closely at the non-regularized result in Figure 2 with dash-cross
line (−×), we found that on ignoring 𝑡 = 0 this numerical solution is very accurate
elsewhere, with RMSE(𝑟)=2.548E-2. This starting point is inaccurate because the
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initial guess is zero 𝑟(0) = 0 whilst without regularization it stays as 𝑟 (0) = 0.
Then we concluded that the regularization is no need for this case as the use of
regularization does not reduce RMSE (𝑟) properly, moreover the inaccuracy occurred
only at 𝑡 = 0 when no regularization, whilst it happened around 𝑡 ∈ (0.8, 1] when
the regularization employed.

The study of Cases 4 and 6 found that the solutions with no noisy input were
similar to Case 3 that the numerical solutions obtained by solving the matrix equa-
tion (3.19) together with minimizing the objective function (3.20) without regular-
ization, 𝜆 = 0, had very good accuracy except at time 𝑡 = 0. Whereas when the
regularization was applied the RMSE (𝑟) could not reduce, and the error around
𝑡 ∈ (0.8, 1] still come up. Like in Case 3, we concluded that the use of regulariza-
tion is not necessary as we found that the result with no regularization provided
sufficiently accurate results, see Table 2 for RMSE(𝑟).

5.2. Case of noisy input 𝑝 = 1%

We next consider the case of a noisy system. The contamination was added to
the system as 𝑘𝜀 in (4.1) with 𝑝 = 1%, and the solution obtained by minimizing

the perturbed objective function Γ𝜀
(

𝑟𝜆
)

had tested. In Figure 3 the dash-dot line
(−⦁) shows the result in Case 1 without regularization, i.e. 𝜆 = 0, whereas the
result with 𝜆 = 10−5 is displayed with circles (◦◦◦). It is obvious that the Tikhonov
regularization reduced inaccuracy and stabilized the solution, and the regularized
result converge to the exact solution with RMSE(𝑟) reduced from 6.175 to 2.748E-1.

Figure 3: The solution of 𝑟(𝑡) obtained by minimizing the objective function
Γ𝜀
1

(

𝑟𝜆
)

with 𝑝 = 1% noisy input and 𝜆 ∈ {0, 10−5}, for Case 1.

Considering the other cases found that when noise is added to the input data
𝑘𝜀 with 𝑝 = 1%, the use of the first–order Tikhonov regularization could deal with
the instability of the system and the approximate result with regularization much
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improved accuracies by using 𝜆 = 10−5 as can be seen from the RMSE(𝑟) shown in
Table 3.

Case 1 2 3 4 5 6

RMSE(𝑢); 𝜆 = 0 6.175 9.617E-1 7.740E-1 3.461 6.400 2.19E+1

RMSE(𝑢); 𝜆 = 10−5 2.748E-1 1.530E-1 1.436E-1 2.588E-1 2.519E-1 4.734E-1

Table 3: RMSEs of the source function 𝑟(𝑡) for the inverse problem with
𝑝 = 1% noisy input and 𝜆 ∈ {0, 10−5}, for Cases 1-6.

6. Conclusion

In this study, the inverse problem of finding a time-dependent source function
for the heat equation with nonlocal boundary conditions and over-determination
conditions were investigated. The finite integration method based on linear ordi-
nary approximation together with finite differences were employed to discretize the
system and to find approximate numerical solutions. In the examples, the numerical
solutions obtained by minimizing linear least-squares were inaccurate and unstable,
but with Tikhonov’s regularization minimization the results converged to the exact
solution in all cases and gave stable solutions with and without noise corrupting the
input data.
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