• 제목/요약/키워드: inventory and setup costs

검색결과 34건 처리시간 0.026초

반제품과 선택품의 재고관리 정책에 대한 연구 (A Study on Inventory Control Policy for Semi-Finished Product and Optional Components)

  • 이동주;이창용
    • 산업경영시스템학회지
    • /
    • 제36권4호
    • /
    • pp.31-37
    • /
    • 2013
  • In this paper, we develop an efficient approach to solve a continuous review inventory system with a budget constraint when the semi-finished product and optional components are required to be assembled. We are, in particular, interested in a budget constraint that includes a service level. The service cost, such as labor and facility costs, tends to increase as the service level increase, and it makes the problem difficult to solve. Assuming that the reorder point for a semi-finished product is given, we show that the order quantity for the semi-finished product and the order quantity and reorder point for optional components can be determined by minimizing the total cost that includes setup cost, inventory holding cost, and shortage cost. The performance of the proposed approach is tested by numerical examples. By using sensitivity analysis, we conclude that, as the reorder point for semi-finished product increases, the order quantity for semi-finished product increases, whereas the order quantity and reorder point of optional components decreases.

다품종 예산제약을 고려한 중앙창고문제 해결방법론에 대한 연구 (A Study on A Methodology for Centralized Warehouse Problem Considering Multi-item and Budget Constraint)

  • 이동주
    • 산업경영시스템학회지
    • /
    • 제35권4호
    • /
    • pp.126-132
    • /
    • 2012
  • This paper deals with a centralized warehouse problem with multi-item and capacity constraint. The objective of this paper is to decide the number and location of centralized warehouses and determineorder quantity (Q), reorder point (r) of each centralized warehouse to minimize holding, setup, penalty, and transportation costs. Each centralized warehouse uses continuous review inventory policy and its budget is limited. A SA (Simulated Annealing) approach is developed and its performance is tested by using some computational experiments.

이중 불확실성하의 공정-저장조 망구조 최적설계 (Optimal Design of Process-Inventory Network under Cycle Time and Batch Quantity Uncertainties)

  • 서근학;이경범
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.305-312
    • /
    • 2010
  • The aim of this study is to find an analytic solution to the problem of determining the optimal capacity of a batch-storage network to meet demand for finished products in a system undergoing joint random variations of operating time and batch material loss. The superstructure of the plant considered here consists of a network of serially and/or parallel interlinked batch processes and storage units. The production processes transform a set of feedstock materials into another set of products with constant conversion factors. The final product demand flow is susceptible to joint random variations in the cycle time and batch size. The production processes have also joint random variations in cycle time and product quantity. The spoiled materials are treated through regeneration or waste disposal processes. The objective function of the optimization is minimizing the total cost, which is composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units. A novel production and inventory analysis the PSW (Periodic Square Wave) model, provides a judicious graphical method to find the upper and lower bounds of random flows. The advantage of this model is that it provides a set of simple analytic solutions while also maintaining a realistic description of the random material flows between processes and storage units; as a consequence of these analytic solutions, the computation burden is significantly reduced. The proposed method has the potential to rapidly provide very useful data on which to base investment decisions during the early plant design stage. It should be of particular use when these decisions must be made in a highly uncertain business environment.

제지 재제조 시스템에서의 자원제약을 고려한 로트 크기 결정 및 일정 계획에 대한 사례연구 (A Case Study on Capacitated Lot-sizing and Scheduling in a Paper Remanufacturing System)

  • 김혁철;도형호;유재민;김준규;이동호
    • 산업경영시스템학회지
    • /
    • 제35권3호
    • /
    • pp.77-86
    • /
    • 2012
  • We consider the capacitated lot-sizing and scheduling problem for a paper remanufacturing system that produces several types of corrugated cardboards. The problem is to determine the lot sizes as well as the sequence of lots for the objective of minimizing the sum of setup and inventory holding costs while satisfying the demand and the machine capacity over a given planning horizon. In particular, the paper remanufacturing system has sequence-dependent setup costs that depend on the type of product just completed and on the product to be processed. Also, the setup state at one period can be carried over to the next period. An integer programming model is presented to describe the problem. Due to the complexity of the problem, we modify the existing two-stage heuristics in which an initial solution is obtained and then it is improved using a multi-pass interchange method. To show the performances of the heuristics, computational experiments were done using the real data, and a significant amount of improvement is reported.

비순차 회분식 공정-저장조 망구조 최적 설계 (Optimal Design of Nonsequential Batch-Storage Network)

  • 이경범;이의수
    • 제어로봇시스템학회논문지
    • /
    • 제9권5호
    • /
    • pp.407-412
    • /
    • 2003
  • An effective methodology is .reported for determining the optimal capacity (lot-size) of batch processing and storage networks which include material recycle or reprocessing streams. We assume that any given storage unit can store one material type which can be purchased from suppliers, be internally produced, internally consumed and/or sold to customers. We further assume that a storage unit is connected to all processing stages that use or produce the material to which that storage unit is dedicated. Each processing stage transforms a set of feedstock materials or intermediates into a set of products with constant conversion factors. The objective for optimization is to minimize the total cost composed of raw material procurement, setup and inventory holding costs as well as the capital costs of processing stages and storage units. A novel production and inventory analysis formulation, the PSW(Periodic Square Wave) model, provides useful expressions for the upper/lower bounds and average level of the storage inventory hold-up. The expressions for the Kuhn-Tucker conditions of the optimization problem can be reduced to two subproblems. The first yields analytical solutions for determining batch sizes while the second is a separable concave minimization network flow subproblem whose solution yields the average material flow rates through the networks. For the special case in which the number of storage is equal to the number of process stages and raw materials storage units, a complete analytical solution for average flow rates can be derived. The analytical solution for the multistage, strictly sequential batch-storage network case can also be obtained via this approach. The principal contribution of this study is thus the generalization and the extension to non-sequential networks with recycle streams. An illustrative example is presented to demonstrate the results obtainable using this approach.

SCM 환경에서의 협력 생산을 고려한 통합 생산 계획에 관한 연구 (Integrated production planning in supply chain management environment considering manufacturing partners)

  • 정호상;정봉주
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2002년도 춘계공동학술대회
    • /
    • pp.363-370
    • /
    • 2002
  • This paper presents a production planning algorithm for minimizing the costs of production and subcontracting in SCM (supply chain management) environment. In our SCM environment, the several local plants that aye dispersed geographically produce parts and products. In this environment, we have to decide the production volumes of both parts and products considering the BOM (bill-of-material) structure to meet the fixed order quantity or forecasted demand quantity. Each plant produces the specified parts of product with finite production capacity. There exist subcontracting decisions relevant to the production capacity of each plant except the core process plant, and when we use the subcontractor's capacities we should be charged for the fixed subcontracting fees. The objective of this study is to solve the production planning problem, which minimizes the total costs of production, inventory, setup, and subcontracting under constraints of production and subcontracting capacity. For this problem, an integrated production planning model based on the multi-level capacitated lot sizing problem was formulated, and efficient decomposition algorithm was proposed. The experimental investigation shows that the proposed heuristic generates quite good solutions at very low computational costs.

  • PDF

Common Due-Date Assignment and Scheduling with Sequence-Dependent Setup Times: a Case Study on a Paper Remanufacturing System

  • Kim, Jun-Gyu;Kim, Ji-Su;Lee, Dong-Ho
    • Management Science and Financial Engineering
    • /
    • 제18권1호
    • /
    • pp.1-12
    • /
    • 2012
  • In this paper, we report a case study on the common due-date assignment and scheduling problem in a paper remanufacturing system that produces corrugated cardboards using collected waste papers for a given set of orders under the make-to-order (MTO) environment. Since the system produces corrugated cardboards in an integrated process and has sequence-dependent setups, the problem considered here can be regarded as common due-date assignment and sequencing on a single machine with sequence-dependent setup times. The objective is to minimize the sum of the penalties associated with due-date assignment, earliness, and tardiness. In the study, the earliness and tardiness penalties were obtained from inventory holding and backorder costs, respectively. To solve the problem, we adopted two types of algorithms: (a) branch and bound algorithm that gives the optimal solutions; and (b) heuristic algorithms. Computational experiments were done on the data generated from the case and the results show that both types of algorithms work well for the case data. In particular, the branch and bound algorithm gave the optimal solutions quickly. However, it is recommended to use the heuristic algorithms for large-sized instances, especially when the solution time is very critical.

현금흐름을 포함하는 회분식 공정-저장조 망구조의 최적설계 (Optimal Design Of Batch-Storage Network with Financial Transactions and Cash Flows)

  • 이의수;이인범;이경범
    • 제어로봇시스템학회논문지
    • /
    • 제11권11호
    • /
    • pp.956-962
    • /
    • 2005
  • This paper presents an integrated analysis of production and financing decisions. We assume that a cash storage unit is installed to manage the cash flows related with production activities such as raw material procurement, process operating setup, Inventory holding cost and finished product sales. Temporarily financial investments are allowed for more profit. The production plant is modeled by the Batch-Storage Network with Recycle Streams in Yi and Reklaitis (2003). The objective function of the optimization is minimizing the opportunity costs of annualized capital investment and cash/material inventory while maximizing stockholder's benefit. No depletion of all the material and cash storage units is major constraints of the optimization. A novel production and inventory analysis formulation, the PSW(Periodic Square Wave) model, provides useful expressions for the upper/lower bounds and average level of the cash and material inventory holdups. The expressions for the Kuhn-Tucker conditions of the optimization problem can be reduced to two subproblems and analytical lot sizing equations under a mild assumption about the cash flow pattern of stockholder's dividend. The first subproblem is a separable concave minimization network flow problem whose solution yields the average material flow rates through the networks. The second subproblem determines the decisions about financial Investment. Finally, production and financial transaction lot sizes and startup times can be determined by analytical expressions as far as the average flow rates are calculated. The optimal production lot and storage sizes considering financial factors are smaller than those without such consideration. An illustrative example is presented to demonstrate the results obtainable using this approach.

공통 부품을 포함한 복수 제품들에 대한 분해 일정계획 (Disassembly Scheduling with Multiple Product Types and Parts Commonality)

  • Kim, Hwa-Joong;Lee, Dong-Ho;Xirouchakis, Paul
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2004년도 춘계공동학술대회 논문집
    • /
    • pp.421-424
    • /
    • 2004
  • This paper focuses on the problem of determining the quantity and timing of disassembling used products while satisfying the demand of their parts or components over a planning horizon. The case of multiple product types with parts commonality is considered for the objective of minimizing the sum of setup, disassembly operation, and inventory holding costs. A heuristic is suggested, in which an initial solution is obtained using a linear programming relaxation method, and then improved by perturbing the given solution using a dynamic programming approach and a look-ahead check while considering the trade-offs among different cost factors.

  • PDF

다단계 생산시스템에서 재작업정책의 비교분석 (Comparative Analysis of Rework Policies in Multistage Production System)

  • 신재선;한주윤;정봉주
    • 대한산업공학회지
    • /
    • 제32권1호
    • /
    • pp.29-41
    • /
    • 2006
  • As the quality and environmental problems become one of the most concerned issues of company, the rework policy needs to be efficiently designed and implemented to sustain the company's competitiveness. This paper examines three basic rework policies in multi-stage production systems and analyzes them in terms of costs of setup, production, inspection, and inventory. For analyzing the performance of the rework policies, we propose mathematical models which can compute total production cost and determine the optimal production batch size to minimize the total production cost. The rework policies are classified by the number and location of inspection stages. Using the mathematical models, we could analyze the performances of rework policies and suggest the optimal rework policy according to each manufacturing environment. The analyses show that the proposed model can be used to analytically evaluate and choose the rework policies.