

Common Due-Date Assignment and Scheduling
with Sequence-Dependent Setup Times: a Case

Study on a Paper Remanufacturing System

Jun-Gyu Kim
Department of Industrial Engineering, Hanyang University

Ji-Su Kim
Department of Industrial Engineering, Hanyang University

Dong-Ho Lee*
Department of Industrial Engineering/Graduate School of Technology and Innovation Management,

Hanyang University

(Received: September 24, 2011 / Revised: December 10, 2011 / Accepted: March 16, 2012)

ABSTRACT

In this paper, we report a case study on the common due-date assignment and scheduling problem in a paper remanu-
facturing system that produces corrugated cardboards using collected waste papers for a given set of orders under the
make-to-order (MTO) environment. Since the system produces corrugated cardboards in an integrated process and has
sequence-dependent setups, the problem considered here can be regarded as common due-date assignment and se-
quencing on a single machine with sequence-dependent setup times. The objective is to minimize the sum of the pen-
alties associated with due-date assignment, earliness, and tardiness. In the study, the earliness and tardiness penalties
were obtained from inventory holding and backorder costs, respectively. To solve the problem, we adopted two types
of algorithms: (a) branch and bound algorithm that gives the optimal solutions; and (b) heuristic algorithms. Computa-
tional experiments were done on the data generated from the case and the results show that both types of algorithms
work well for the case data. In particular, the branch and bound algorithm gave the optimal solutions quickly. How-
ever, it is recommended to use the heuristic algorithms for large-sized instances, especially when the solution time is
very critical.

Keywords: Due-Date Assignment, Scheduling, Paper Remanufacturing, Case Study

* Corresponding Author, E-mail: leman@hanyang.ac.kr

1. INTRODUCTION

Common due-date assignment and scheduling, which
is the problem of determining the common due-date as
well as the job schedule, has been received considerable
attention during the last decades due to the just-in-time
concept. In general, due-date assignment has a certain
practical implication when a company offers due-dates

of products to its customers during sale negotiations or
offers a price reduction when the due-date is far away
from the expected one. The earlier the due-dates are set,
the higher the probability of the loss of customer good-
will since the products may not be completed or deliv-
ered on time. On the other hand, the later the due-dates
are set, the higher the probability of having high inven-
tory due to the early completions of products. In fact,

Management Science and Financial Engineering
Vol 18, No 1, May 2012, pp.1-12
ISSN 2287-2043│EISSN 2287-2361│ © 2012 KORMS

Kim, Kim, and Lee: Management Science and Financial Engineering
Vol 18, No 1, May 2012, pp.1-12, © 2012 KORMS 2

there are various practical situations where due-dates are
negotiated rather than simply set by customers.

This paper reports a case study on common due-
date assignment and scheduling in the D paper remanu-
facturing system, located in Ansan, South Korea. Re-
manufacturing, the most advanced product recovery
option, processes used or end-of-life products in such a
way that their qualities are as good as new in terms of
appearance, reliability, and performance (Lund, 1984).
Using waste papers collected by the third party logistics
companies, the D company produces corrugated card-
boards of different grades in the form of large rolls and
then they are cut into different sizes depending on cus-
tomer orders. In general, the corrugated cardboards are
used to make packaging boxes, etc.

In the paper remanufacturing system, the sequence-
dependent setups must be considered since different types
of raw materials are used according to product types. In
other words, it is needed to clean up the equipment after
processing a job (in the form of batch) if the job just
completed is different from the job to be processed. Also,
the system produces the corrugated cardboards in an inte-
grated process. In other words, although the corrugated
cardboards are produced by a series of operations, the
entire system can be considered as a single machine.
Note that paper manufacturing is generally classified as
the process industry. The details of the manufacturing
process are given in Section 2. Since the company pro-
duces corrugated cardboards in an integrated process
and has sequence-dependent setup times, the problem
considered here can be regarded as common due-date
assignment and sequencing on a single machine with
sequence-dependent setup times.

There are a few previous research articles on pro-
duction planning and scheduling in paper manufacturing
systems. Gupta and Magnusson (Gupta and Magnusson,
2005) consider the lot sizing and scheduling problem for
sandpaper manufacturing system with sequence-depen-
dent setups, and suggest a heuristic algorithm after for-
mulating the problem as the basic capacitated lot sizing
and scheduling problem (CLSP) where the setup condi-
tion at the end of each period is maintained. Bouchriha
and D’Ouhimmou (2007) report another case study on
the lot sizing and scheduling problem for a paper manu-
facturing company in Canada. They consider the prob-
lem with sequence-dependent setup times while consid-
ering the common cycle, and suggest a mixed integer
programming model. Also, Kim et al. (2008) suggest he-
uristic algorithms for the CLSP in a paper remanufactur-
ing system.

Most of the case studies on production planning
and scheduling in paper manufacturing systems are done
under the make-to-stock (MTS) environment. Unlike these,
we performed a case study under the situation that the
system is operated under the make-to-order (MTO) en-
vironment. In fact, the paper remanufacturing company
is under the situation that the system is being changed
from the MTS to the MTO environment. Therefore, a set

of orders are given from customers and hence finding
efficient production schedules becomes one of important
system operation problems.

There are many theoretical articles on the single
machine common due-date assignment and sequencing
problem. Panwalkar et al. (1982) consider the problem
for the objective of minimizing the sum of the penalties
associated with due-date assignment, earliness and tar-
diness, and suggest an optimal algorithm in which the
common due-date is set in advance using a preliminary
analysis and then each job is sequenced based on the
weight value corresponding to each position. Later, Cheng
(1986) proposes a linear programming model for the pro-
blem of Panwalkar et al. (1982). Various extensions of
the basic problem can be found in the literature (Quad-
dus, 1987; Baker and Scudder, 1989; Chen, 1996; Biskup
and Jahnke, 2001; Ng et al., 2003; Cheng et al., 2002;
Kim and Lee, 2009). Other extensions, such as other
objectives and machine environments, can be found in
the literature (Birman and Mosheiov, 2004; Chen et al.,
1997; Cheng, 1990; Cheng and Kovalyov, 1996; Cheng
et al., 1996; Cheng et al., 2002; Diamond and Cheng,
2000; Dvir, 2008; Dvir and George, 2006; Hall, 1986;
Li et al., 2008; Mosheiov, 2001; Xia et al., 2008). See
Gordon et al. (2002) for a literature review on various
common due-date assignment and scheduling problems,
especially those on a single machine.

This paper reports a case study on common due-
date assignment and sequencing in the D paper remanu-
facturing system. In fact, this paper is a variation of Kim
et al. (2008) that considers the capacitated lot-sizing and
scheduling problem (CLSP) with sequence-dependent
setups under the MTS environment. The problem is to
determine the lot sizes as well as the sequence of lots for
the objective of minimizing the sum of setup and inven-
tory holding costs while satisfying the demand and the
machine capacity over a given planning horizon. On the
other hand, this paper considers the common due-date
assignment and sequencing problem under the MTO
environment for a given set of jobs in each customer
order, and the problem is to determine the common due-
date of the customer order as well as the sequence of
jobs. The objective is to minimize the sum of the penal-
ties associated with due-date assignment, earliness, and
tardiness. In this study, the earliness and tardiness penal-
ties imply inventory holding and backorder costs, re-
spectively. To solve the problem, we adopted two algo-
rithms of Kim and Lee (2009): (a) optimal branch and
bound algorithm; and (b) heuristics. To show the appli-
cability and performances of the algorithms, computa-
tional experiments were done on the data generated
from the case and the results are reported.

The rest of this paper is organized as follows. The
next section describes the system and then the problem
considered in this paper. Section 3 explains the solution
algorithms and Section 4 reports the test results. Finally,
Section 5 gives a summary and discussion.

Common Due-Date Assignment and Scheduling with Sequence-Dependent Setup Times
Vol 18, No 1, May 2012, pp.1-12, © 2012 KORMS 3

2. SYSTEM AND PROBLEM
DESCRIPTIONS

2.1 System description

The D paper remanufacturing system makes vari-
ous types of corrugated cardboards using waste papers
collected by the third party logistics companies. Accord-
ing to the raw materials and product quality, the prod-
ucts can be largely classified into four categories: (a)
product B (best quality) that uses only pulp and im-
ported waste papers; (b) product S that uses either white
or colored pulp; (c) product C that uses both liner board
and corrugating medium; and (d) product K that uses
domestic waste paper. As stated earlier, all products are
produced in the form of paper roll with 4000 cm, and
they are cut into final products with different sizes de-
pending on customer orders. In this study, we consider
the four product types before the cutting operation. The
facility is continuously operated for full time with three
shifts in a day except for maintenance works.

The detailed remanufacturing process of the paper
rolls can be described as Figure 1. First, in the dissocia-
tion process, raw materials in the forms of collected
waste paper, pulp and others are dissolved and passed
through the quarantine step that removes wastes. Second,
the materials are concentrated and go through the brea-
thability process that put into the water and beat to a
pulp, which gives wet materials for manufacturing pa-
pers. Third, the wet materials are processed repeatedly
through the compression and drying processes that pro-

duce dried paper forms. Finally, the products with the
width of 4000 cm are produced in the form of roll after
performing the polishing process.

The corrugated cardboard manufacturing system is
a type of process industry, such as chemical, oil refining,
etc., and hence the entire system can be regarded as a
single machine. In other words, the products are stan-
dardized and the processes required for each product are
closely connected and well balanced. Also, the system is
currently being operated in the MTS environment. How-
ever, due to uncertain customer orders and short lead
times, the system operation is being changed into the
MTO environment. This results that the scheduling pro-
blem is more important than the production planning
problem. Also, it is needed to clean up the equipment
after processing a job if the job just completed is differ-
ent from the job to be processed. Therefore, the se-
quence-dependent setups must be considered since dif-
ferent types of raw materials are used in the production
process.

2.2 Problem description

The problem considered here can be regarded as
single machine common due-date assignment and se-
quencing with sequence-dependent setup times. Here,
due-date assignment is additionally considered since there
is a conflict that customers wish to receive their prod-
ucts as soon as possible while the company wants to
have enough production time due to short production
capacity. Note that the common due-date, which may be

Dissociation Careful selection

Condebelt Press dried

Concentration

Pressure-dry

Compress Drying Rolling systemGloss Cutting

Figure 1. Remanufacturing Process of Corrugated Cardboards

Kim, Kim, and Lee: Management Science and Financial Engineering
Vol 18, No 1, May 2012, pp.1-12, © 2012 KORMS 4

different from the real due-date, is assigned to each cus-
tomer order, where an order consists of one or more pro-
duct types with specified quantities. Therefore, we solve
the common due-date assignment and sequencing prob-
lem for each customer order. It is assumed that a set of
customer orders to be produced in the upcoming period
are given from the upper production planning decision.

Now, the problem considered in this study can be
briefly described as: for a given set of jobs in each cus-
tomer order, we determine the common due-date as well
as the job sequence while considering the sequence-
dependent setup times for the objective of minimizing
the sum of penalties associated with due-date assign-
ment, earliness, and tardiness. In this study, the penal-
ties, associated with earliness and tardiness, are consid-
ered in the forms of inventory holding and backorder
costs, respectively.

We consider a static version of the problem. That is,
all jobs are available for processing simultaneously at
the point of scheduling decision. Also, it is assumed that
all job descriptors, such as processing times, setup times,
penalties are deterministic and given in advance. Other
assumptions made in this problem are summarized as
follows: (a) the system cannot process two or more jobs
simultaneously; (b) job splitting and preemptions are not
permitted; and (c) idle times caused by machine break-
downs are not considered. Although we consider a static
and deterministic version of the problem, it can be easily
seen that the problem considered here is NP-hard be-
cause its special case is known to be NP-hard (Rabadi et
al., 2004).

To represent the problem more clearly, a mixed in-
teger programming model of Kim and Lee (2009) is
presented below. Before presenting the model, the nota-
tions are summarized below.

Parameters

pi processing time of job i (i = 1, 2, …, n)
sij setup time required between two consecutive

jobs i and j
Ei earliness of job i, i.e., max{0, d-Ci}, where d is

the common due-date (decision variable)
Ti tardiness of job i, i.e., max{0, Ci-d}
α penalty associated with earliness
β penalty associated with tardiness
γ penalty associated with assigning the common

due-date
Ci completion time of job i
L large number

Decision variables

d common due-date
Yij = 1 if job i is performed directly before job j, and 0

otherwise

Mixed integer programming model

Minimize
1
()

n

i i
i

E T dα β γ
=

⋅ + ⋅ + ⋅∑

subject to
i i iC d T E− = − for i = 1, 2, …, n (1)

i j ij i jiC C L Y p s− + ⋅ ≥ + (2)
for i = 1, 2, …, n and j = i + 1, …, n

(1)j i ij j ijC C L Y p s− + ⋅ − ≥ + (3)
for i = 1, 2, …, n and j = i + 1, …, n
0i i iC p s≥ + for i = 1, 2, …, n (4)

, , , 0i i iC E T ≥ for i = 1, 2, …, n (5)
0d ≥ (6)
{0, 1}ijY ∈ (7)

for i = 1, 2, …, n and j = i + 1, …, n

The objective function denotes the sum of earliness,

tardiness and due date assignment penalties that depend
on the completion time of each job and the common-
due-date. Constraint (1) specifies the amounts of earli-
ness and tardiness while ensuring that Ti and Ei cannot
be positive at the same time. Constraints (2) and (3) are
used to represent the precedence relation between jobs i
and j. Constraint (4) represents the minimum completion
time of each job. That is, the completion time of an arbi-
trary job should be larger than or equal to the sum of its
processing time and the initial setup time. Finally, the
constraints (6) and (7) represent the conditions of the
decision variables.

3. SOLUTION ALGORITHMS

This section explains the solution algorithms: (a)
optimal branch and bound algorithm; and (d) heuristics.
Before presenting the algorithms, we explain the method
to set the common due-date.

3.1 Setting the Common Due-Date

As explained in Kim and Lee (2009), the following
two propositions specify the optimal common due-date.
Proposition 1 specifies that the common due-date must
coincide with the completion time of a job in a given
sequence. Also, by differentiating the objective function
with respect to the common due-date and setting it equal
to zero, we can specify the optimal common due-date.
The details are given in Proposition 2. In the proposi-
tions, where α, β, and γ are the penalties associated with
earliness, tardiness, and due-date assignment, respec-
tively. Also, [j] denotes the index for the job sequenced
at the jth position, j = 1, 2, …, n. See Appendix A for a
numerical example for the two propositions.

Proposition 1: For any specified sequence S, there ex-
ists an optimal value of common due-date d which coin-
cides with the completion time of one of the jobs in S.
Proposition 2: For any specified sequence S, there ex-
ists an optimal common due-date equal to C[k], where k

Common Due-Date Assignment and Scheduling with Sequence-Dependent Setup Times
Vol 18, No 1, May 2012, pp.1-12, © 2012 KORMS 5

is the smallest integral value greater than or equal to
() /()n β γ α β− + .

3.2 Branch and Bound (B&B) Algorithm

Before explaining the branching scheme, we calcu-
late the positional weights according to Proposition 3.
(See Kim and Lee (2009) for its proof.) Note that this
result is an extension of the method to calculate the po-
sitional weights proposed by Panwalkar et al. (1982) by
considering the sequence-dependent setup times. In this
proposition, APij = sij+pj, where sij and pj denote setup
time required between two consecutive jobs i and j and
processing time of the latter job j, respectively. Note that
the job in the first position does not have the setup time,
i.e., AP[0][1] = p[1]. See Appendix A for a numerical ex-
ample for the proposition.

Proposition 3: For any sequence, the objective function
can be reformulated as

1 [1] [1][]2
,n

j j jj
w p w AP −=
⋅ + ⋅∑

where wj = (j-1) ⋅ α+n ⋅ γ if j ≤ k, and β ⋅ (n-j+1), oth-
erwise. Here, wj is the positional weight when a job oc-
cupies the jth position and k is the index for the job that
determines the optimal common due-date.

Since the common due-date can be fixed using the

Propositions 1 and 2, the branching scheme is explained
with a B&B tree for a given common due-date. In the
B&B tree, each node (except for the root) denotes a par-
tial job sequence considering the positional weights
given in Proposition 3, and each level corresponds to the
number of jobs fixed in the partial sequence.

The branching starts at the top of the tree, i.e., level
0, where no jobs have been assigned to any position in
the sequence. At level 1, n nodes are branched from the
root node and the corresponding job is assigned to the
position with the largest position weight. At level 2, n-1
nodes are branched from each of the nodes at level 1,
and the jobs are assigned to the position with the second
largest position weight, and so on. For node selection,
the depth-first rule is used. That is, if the current node is
not fathomed, the next node to be considered is its child
node with the smallest job index. In this paper, the
branching is done using the positional weights obtained
from Proposition 3 since the job with the largest posi-
tional weight may contribute to minimize the objective
value. Figure 2 shows an example of the B&B tree for
an instance with 4 jobs in which the common due-date
coincides with the completion time of the second job.

Now, we explain a lower bound, which can be cal-
culated at each node of the B&B tree, and upper bound,
which is calculated once at the root node of the B&B
tree, i.e., an initial solution. Note that the upper bound is
obtained using the better one of the two heuristics that

will be explained later. Detailed methods to obtain the
lower and upper bounds are given below. Let PSl denote
the set of jobs included in the partial sequence at node l.

31 *32* *34*

1324 4321

*1** *4***3***2**

Level 0

Level 1

Level 2

Level 3

Figure 2. Branch and Bound Tree: Example

The lower bound, denoted by LB hereafter, is cal-

culated as

AE + AT + PE + PT + DC,

where AE (AT) denotes the earliness (tardiness) penalty
realized by the jobs in the partial sequence, and PE (PT)
denotes the earliness (tardiness) penalty derived from
the jobs not in PSl. DC denotes the due-date assignment
penalty realized by the jobs in the partial sequence.
More formally, AE and AT can be represented as

[1][]2
(1)k

j jj k e
AE j APα −= − +

= ⋅ − ⋅∑ and
1

[][1]() ,k t
j jj k

AT n j APβ + −

+=
= ⋅ − ⋅∑

which is similar to the calculation method for the sequen-
cing problem with earliness and tardiness penalties ex-
cept that AP[i][j] ’s are used instead of the processing
times. Here, e (t) denotes the number of jobs assigned
before (after) the common due-date in the partial se-
quence. In addition, to derive PE and PT, we define

1, 2, ,
min { }j ijj n

MAP AP
=

=
L

for job j ∉ PSl and j ≠ i. Then, PE and PT are obtained
by matching the job with the smallest value of MAPj to
the largest positional weight, the next smallest value of
MAPj to the next largest positional weight, and so on.
More formally, PE and PT can be represented as

1
[]1

(1)k e
jj

PE j MAPα − +

=
= ⋅ −∑ and

[]() .n
jj k t

PT n j MAPβ
= +

= ⋅ −∑

Finally, based on the sequence [j] for j = 1, 2, …, n, ob-
tained from the above method, DC can be derived as

Kim, Kim, and Lee: Management Science and Financial Engineering
Vol 18, No 1, May 2012, pp.1-12, © 2012 KORMS 6

1
[1] [] [1][]2 2

().k e k
j j jj j k e

DC n P MAP APγ − +
−= = − +

= ⋅ ⋅ + +∑ ∑

Note that PE, PT and DC are valid elements for the
lower bound since they are calculated using MAPj for j
∉ PSl instead of APij.

The B&B algorithm incorporates a dominance pro-
perty to reduce the search space. Note that the property
given in the following proposition can be used in such a
way that any node with the level less than or equal to
four can be removed from further consideration if the
condition given in the proposition holds. (See Kim and
Lee (2009) for its proof.) See Appendix A for a numeri-
cal example for the proposition.

Proposition 4: For four arbitrary consecutive jobs [r-1],
[r], [r+1], and [r+2] in a partial sequence, the node with
the smallest positional weight can be fathomed if

[] [1][1] [1][] [1] [1][] [][1]() ()r r r r r r r r r rw AP AP w AP AP− + − + + +− + −

[2] [][2] [1][2]() 0r r r r rw AP AP+ + + ++ − <

where w[r] is the weight of the rth position.

3.3 Heuristic Algorithms

When the optimal B&B algorithm requires an ex-
cessive amount of computation time, the heuristic algo-
rithms, called modified nearest neighborhood heuristic
and clustering heuristic of Kim and Lee (2009), can be
used. Each of the heuristics is explained below.

3.3.1 Modified nearest neighborhood heuristic

This heuristic consists of two phases: obtaining an
initial solution and improvement. The initial solution is
obtained with a method similar to the nearest neighbor
heuristic for the traveling salesman problem (TSP) and
then it is improved by iteratively interchanging the jobs
in the current schedule.

First, a job is selected and assigned to the position
with the largest positional weight. Then, if the position
with the second largest positional weight is located be-
fore the common due-date, selected is the job j* such
that

* arg min{ },ji

j U
j BP

∈
=

where BPji = sji + pj and U denotes the set of unsched-
uled jobs. Otherwise, selected is the job j* such that

* arg min{ },ij
j U

j AP
∈

=

where APij = sij+pj. Then, the selected job j* is assigned
to the corresponding position. This is done for the re-
maining positions in the non-increasing order of posi-
tional weights until a complete sequence is obtained. Since
it is possible to obtain n different sequences, depending

on the first job, the initial solution is set to the best one
among the n sequences.

The detailed procedure to obtain the initial solution
is summarized below. In the procedure, if denotes the
index for the job to be positioned first.

Procedure 1: (Modified nearest neighborhood heuristic:
obtaining an initial solution)
Step 1: Set if = 1.
Step 2: Initialize U = {1, 2, …, n}, and do the following

steps:
(a) Assign job if to the position with the largest

positional weight and set U = U\{if }.
(b) If the position with the second largest posi-

tional weight is located before the common
due date, select job j* with the minimum BP
value, i.e.,

,* arg min{ }

fj i
j U

j BP
∈

= ,

where BPji = sji+pj. Otherwise, select job j*
with the minimum AP value, i.e.,

,* arg min{ }
fi j

j U
j AP

∈
=

where APij = sij+pj.
(c) Assign the selected job j* to the correspond-

ing position, and set U = U\{j*}.
(d) Repeat steps (b) and (c) for the remaining

positions in the non-increasing order of the
positional weights until there is no remain-
ing job.

Step 3: If the solution is improved, update the solution.
Set if = if + 1. If if > n, stop. Otherwise go to
Step 2.

To improve the initial solution, two methods for in-

terchanging jobs, forward and backward interchanges,
are used. In the forward interchange method, the jobs
positioned before the common due-date are selected one
by one according to the initial sequence and then the
selected job is interchanged with those after the com-
mon due-date while considering the changes in the ob-
jective value. On the other hand, in the backward me-
thod carried out on the sequence obtained after the for-
ward interchange method has terminated, the jobs posi-
tioned after the common due-date are selected one by
one according to the sequence obtained from the for-
ward interchange and then the selected jobs are inter-
changed with those before the common due-date. The
detailed procedure for the improvement method is sum-
marized below.

Procedure 2: (Modified nearest neighborhood heuristic:
improvement)
Step 1: Set r = 1.

Common Due-Date Assignment and Scheduling with Sequence-Dependent Setup Times
Vol 18, No 1, May 2012, pp.1-12, © 2012 KORMS 7

Step 2: (Forward interchange) Do the following steps:
(a) Set t = id + 1.
(b) Calculate the solution value after interchang-

ing the jobs r and t in the current sequence.
(c) If this reduces the objective function value,

update the solution.
(d) Set t = t +1. If t ≤ n, go to Step 2(b). Other-

wise, set r = r +1 and go to Step 2(a).
Step 3: (Backward interchange) Do the following steps:

(a) Set t = id + 1 and r = 1.
(b) Calculate the solution value after interchang-

ing the jobs r and t in the current sequence.
(c) If this reduces the objective function value,

update the solution.
(d) Set r = r +1. If r ≤ id, go to Step 3(b). Oth-

erwise, set t = t +1, r = 1 and go to Step 3(b).

3.3.2 Clustering heuristic
In this heuristic, an initial solution is obtained by

solving the relaxed problems in which the sequence-
dependent setup times are aggregated and added to the
processing times, and it is improved by the forward and
backward interchanging method explained earlier. The
sequence-dependent setup times of each job are aggre-
gated using two different methods: (a) the maximum
sequence-dependent setup time; or (b) the average se-
quence-dependent setup time. More formally, the proc-
essing time of job j (≠ i) can be represented as either

1, 2, ,
max { }j iji n

p s
=

+
L

 or

1

1
1

n

j ij
i
i j

p s
n =

≠

+
− ∑ .

To solve the relaxed problems, the optimal algorithm

of Panwalkar et al. (1982) is used. Then, clusters are
obtained by extracting the same partial sequences (be-
fore and after the common due-date) from the two se-
quences. Based on the clusters, a job is selected and as-
signed to the position with the largest positional weight
explained earlier. Second, if the position with the second
largest positional weight is located before (after) the
common due-date, the job that directly precedes (suc-
ceeds) the initial job is selected if the initial job is in-
cluded in the clusters positioned before (after) the com-
mon due-date. Otherwise, the job with the minimum BP
(AP) value is selected. Then, the selected job is assigned
to the position with the next largest positional weight. In
this way, this heuristic constructs a complete sequence.
As in the first heuristic, this heuristic sets the initial so-
lution to the best one among the n sequences depending
on the first job to be positioned. The detailed procedure
to obtain the initial solution in the clustering heuristic is
summarized below.

Procedure 3: (Clustering heuristic: obtaining an initial
solution)
Step 1: Obtain the clustered jobs (after solving the two

relaxed problems without sequence-dependent

setup times) and set if = 1.
Step 2: Initialize U = {1, 2, …, n}, and do the following

steps:
(a) Assign job if to the position with the largest

positional weight and set U = U\{if }.
(b) If the position with the second largest posi-

tional weight is located before the common
due date, select job j* that directly precedes
job if if job if is included in the clusters posi-
tioned before the common due date. Other-
wise, select job j* with the minimum BP
value, i.e.,

,* arg min{ }

fj i
j U

j BP
∈

=

where BPji = sji + pj.
(c) If the position with the second largest posi-

tional weight is located after the common
due date, select job j* that directly succeeds
job if if job if is included in the clusters posi-
tioned after the common due date. Other-
wise, select job j* with the minimum AP
value, i.e.,

,* arg min{ }

fi j
j U

j AP
∈

=

where APij = sij + pj.
(d) Assign the selected job j* to the correspond-

ing position, and set U = U\{j*}.
(e) Repeat steps (b), (c) and (d) for the remain-

ing positions in the non-increasing order of
the positional weights until there is no re-
maining job.

Step 3: If the solution is improved, update the solution.
Set if = if + 1. If if > n, stop. Otherwise go to
Step 2.

3.3.3 Numerical example

The two heuristic algorithms are explained more
clearly using an example with 5 jobs. The processing
times of jobs 1, 2, 3, 4 and 5 are 1, 2, 3, 4 and 5, respec-
tively. The penalties associate with earliness, tardiness
and assigning common due date are set to 2, 4, 1, re-
spectively. (α = 2, β = 4 and γ = 1) Also, the sequence
dependent setup times are given below.

Table 1. Example: Sequence-Dependent Setup Times

Job 1 2 3 4 5
1
2
3
4
5

-
12
10
17
10

9
-
6
3
15

2
22
-
3
4

5
7
23
-
8

10
12
30
8
-

a) Setting the common due-date

Calculate the common due-date using Propositions 1

Kim, Kim, and Lee: Management Science and Financial Engineering
Vol 18, No 1, May 2012, pp.1-12, © 2012 KORMS 8

and 2, i.e.,

k = ⎡n · (β – γ)/(α +β)⎤ = ⎡5 · (4 – 1)/(2 + 4)⎤ = 3.

Then, the optimal common due-date becomes C[3].

b) Calculating the positional weights
w[1] = n ⋅ γ =1 · 5 = 5
w[2] = (j – 1) ⋅ α + n ⋅ γ = 1 · 2+5 · 1 = 7
w[3] = 2 · 2+5 · 1 =9
w[4] = β ⋅ (n – j + 1) = 4 · (5 – 4 + 1) = 8
w[5] = 4 · (5 –5 + 1) = 4

c) Obtaining the solutions

1) Modified nearest neighborhood heuristic
Stage 1: Obtaining the initial solution
Step 1: Set if = 1
Step 2: Initialize U = {1, 2, 3, 4, 5}

• if = 1
- Assign job 1 to the position with the

largest positional weight (= w[3]).
- Partial sequence: (**1**) and U = {2, 3,

4, 5}
- Select job j* for the position with the

second largest positional weight
Calculate the minimum AP value since
the position with the 2nd largest posi-
tional weight (= w[4]) is located after the
common due date.

j* = argmin{AP12, AP13, AP14, AP15}
= argmin {s12+p2, s13+p3, s14+p4, s15+p5}
= argmin {10, 5, 9, 15} = 3
Partial sequence (**13*) and U = {2, 4, 5}

- Select job j* for the position with 3rd lar-
gest positional weight
Calculate the minimum BP value since
the position with the 3rd largest posi-
tional weight (= w[2]) is located before
the common due date.
j* = argmin{BP21, BP41, BP51}

= argmin {s21+p2, s41+p4, s51+p5}
= argmin {14, 21, 15} = 2

Partial sequence (*213*) and U = {4, 5}
- In this way, we can obtain the final se-

quence (4, 2, 1, 3, 5) with the objective
value of 285.

• if = 2
- Partial sequence (**2**) and U = {1, 3,

4, 5}
- Final sequence (1, 3, 2, 4, 5) with the

objective value of 161
• if = 3

- Partial sequence (**3**) and U = {1, 2,
4, 5}

- Final sequence (5, 1, 3, 2, 4) with the
objective value of 189

• if = 4
- Partial sequence (**4**) and U = {1, 2,

3, 5}
- Final sequence (3, 1, 4, 2, 5) with the

objective value of 202
• if = 5

- Partial sequence (**5**) and U = {1, 2,
3, 4}

- Final sequence (2, 1, 5, 3, 4) with the
objective value of 308

Step 3: Initial solution (1, 3, 2, 4, 5) (objective
value = 161)

Stage 2: Improvement
Step 1: Forward interchange on the initial solution

(1, 3, 2, 4, 5)
• Interchange jobs 1 and 4: (4, 3, 2, 1, 5)

with objective value 231
• Interchange jobs 1 and 5: (5, 3, 2, 4, 1)

with objective value 231
• Interchange jobs 3 and 4: (1, 4, 2, 3, 5)

with objective value 363
• Interchange jobs 3 and 5: (1, 5, 2, 4, 3)

with objective value 278
• Interchange jobs 2 and 4: (1, 3, 4, 2, 5)

with objective value 298
• Interchange jobs 2 and 5: (1, 3, 5, 4, 2)

with objective value 365
No improvement

Step 2: Backward interchange on the current solu-
tion (1, 3, 2, 4, 5)
• Interchange jobs 4 and 1: (4, 3, 2, 1, 5)

with objective value 231
• Interchange jobs 4 and 3: (1, 4, 2, 3, 5)

with objective value 363
• Interchange jobs 4 and 2: (1, 3, 4, 2, 5)

with objective value 298
• Interchange jobs 5 and 1: (5, 3, 2, 4, 1)

with objective value 231
• Interchange jobs 5 and 3: (1, 5, 2, 4, 3)

with objective value 278
• Interchange jobs 5 and 2: (1, 3, 5, 4, 2)

with objective value 365
No improvement

2) Clustering heuristic
Stage 1: Obtaining the initial solution
Step 1: Obtain the clustered jobs

• Job sequence using the maximum se-
quence-dependent setup time
p′1 = p1+max{s21, s31, s41, s51}

= 1+max{12, 11, 17, 10} = 18
p′2 = p2 + max{s12, s32, s42, s52}

= 2+max{9, 6, 3, 15} = 17
p′3 = p3 + max{s13, s23, s43, s53}

= 3+max{2, 22, 3, 4} = 25
p′4 = p4+max{s14, s24, s34, s54}

= 4 + max{5, 7, 23, 8} = 27
p′5 = p5+max{s15, s25, s35, s45}

= 5 + max{10, 12, 30, 8} = 35
- Job sequence: 1, 3, 5, 4, 2 (Job 5→ w[3]

Common Due-Date Assignment and Scheduling with Sequence-Dependent Setup Times
Vol 18, No 1, May 2012, pp.1-12, © 2012 KORMS 9

(= 9), Job 4→ w[4] (= 8), Job 3→ w[2] (=
7), Job 1→ w[1] (= 5), Job 2→ w[5] (= 4))

• Job sequence using the average se-
quence-dependent setup time
p′1 = p1+average{s21, s31, s41 , s51}

= 1+(12+11+17+10)/4 = 13.5
p′2 = p2+average{s12, s32, s42, s52}

= 2+(9+6+3+15)/4 = 10.25
p′3 = p3+average{s13, s23, s43, s53}

= 3+(2+22+3+4)/4 = 10.75
p′4 = p4+average{s14, s24, s34, s54}

= 4+(5+7+23+8)/4 = 14.75
p′5 = p5+average{s15, s25, s35, s45}

= 5+(10+12+30+8)/4 = 25
- Job sequence: 3, 1, 5, 4, 2 (Job 5→

w[3](= 9), Job 4→ w[4](= 8), Job 1→
w[2](= 7), Job 3→ w[1](= 5), Job 2→
w[5](= 4))

• Job cluster: (5 – 4 – 2) after the common
due date

Step 2: Initialize U = {1, 2, 3, 4, 5} and set if = 1.
• if = 1

- Assign job 1 to the position with the
largest positional weight (= w[3]).

- Partial sequence: (**1**) and U = {2, 3,
4, 5}

- Select job j* for the position with the
second largest positional weight
Job if (= 1) is not included in the job
cluster
j* = argmin {AP12, AP13, AP14, AP15}

= argmin {10, 5, 9, 15} = 3
Partial sequence (**13*) and U = {2, 4, 5}

- Select job j*for the position with 3rd
largest positional weight
Job if (= 1) is not included in the job
cluster
j* = argmin{BP21, BP41, BP51}

= argmin {14, 21, 15} = 2
Partial sequence (*213*) and U = {4, 5}

- In this way, we can obtain the final se-
quence (4, 2, 1, 3, 5) with the objective
value of 285.

• if = 2: final sequence (1, 3, 2, 4, 5) with
the objective value of 161
• if = 3: final sequence (5, 1, 3, 2, 4) with

the objective value of 189
• if = 4: final sequence (3, 1, 4, 2, 5) with

the objective value of 202
• if = 5

- Partial sequence: (**5**) and U = {1, 2,
3, 4}

- Select job j* for the position with the
second largest positional weight
Job if (= 5) is included in the job cluster
after the common due date and job 4 di-
rectly succeeds job 5 in job cluster
Partial sequence (**54*) and U = {1, 2, 3}

- In this way, we can obtain the final se-
quence (3, 1, 5, 4, 2) with the objective
value of 251

Step 3: Obtain the initial solution (1, 3, 2, 4, 5)
(objective value = 161)

Stage 2: Improvement
Same as the modified nearest neighbour heuristic

4. TEST RESULTS

This section reports the test results on the case study.
Since the system is currently operated under the make-
to-stock environment, it is not possible to compare the
performance of the algorithms with the existing method
used in the company. Instead, we report the perform-
ances of the two types of algorithms: the optimal B&B
algorithm and the heuristics. The performance measures
used are: (a) CPU seconds for the optimal B&B algo-
rithm; and (b) the percentage gaps from the optimal so-
lution values for the two heuristics. Note that the CPU
seconds of the heuristics are not reported here since they
are less than 0.01 seconds. The B&B algorithm and the
two heuristic algorithms were coded in C and the test
was performed on a workstation with an Intel Xeon
processor operating at 3.20GHz 120MHz clock speed.

To obtain the data required for the case study, we
gathered the real demand data for a randomly selected
planning period of six days. Table 2(a) shows the set of
orders, together with product types and production
quantities. In the test data, the number of jobs included
in each order ranges from 6 to 12, and hence we can
obtain the optimal solution using the B&B algorithm.
Note that Kim and Lee (2009) report that the B&B algo-
rithm can give optimal solutions for the problems up to
16 jobs (In this paper, the B&B algorithm is tested on
the instances with 10, 12, 14, 15, 16 jobs). The process
times of products B, S, C and K are 7, 6, 7 and 8.5 hours,
respectively. Also, the sequence-dependent setup times
are summarized in Table 2(b).

Since the company does not have the data for in-
ventory holding and backorder costs, we generated the
case instances with different penalty values. More spe-
cifically, 90 instances were generated, i.e., 10 instances
for 9 combinations for three levels of inventory holding
costs (10~20%, 20~30%, and 30~40% of the average
price of the four product types) and five levels of back-
order costs (20~30%, 30~40%, 40~50%, 50~60% and
60~70% of the average price of the four product types).
In fact, we heard from the operation manager of the
company that the inventory holding and the backorder
costs do not exceed 50% and 80% of the product price,
respectively. Here, inventory holding and backorder costs
were estimated using the average price of the four prod-
uct types. Also, the costs associated with the due-date
assignment were generated as the backorder cost sub-
tracted by 5%~10% of the average price of the four
product types. Although we could not use the exact val-

Kim, Kim, and Lee: Management Science and Financial Engineering
Vol 18, No 1, May 2012, pp.1-12, © 2012 KORMS 10

ues of the three penalty values, we tried to increase the
reliability of the results by testing the instances with
various penalty values.

Table 2. Problem Data for the Case Instances

(a) Demand Requirements
Product types Order

number B S C K
Total number

of jobs
1
2
3
4
5
6

2
5
3
3
3
3

2
1
1
1
1
1

3
4
2
3
3
2

1
2
4
4
5
4

8
12
10
11
12
10

(b) Sequence-Dependent Setup Times

Product types
Product types

B S C K
B
S
C
K

-
1

2.5
1.1

 1*
-

2.1
1.3

4.7
1.7
-
1

3
1.8
1
-

Note: * Sequence-dependent setup time (hr) from product B to S.

The test results are summarized in Table 3(a) and

(b) that show the CPU seconds of the optimal B&B al-
gorithm and the percentage gaps of the two heuristics,
respectively. First, the optimal B&B algorithm required
much short computation times since it solved only
small-sized instances. However, we can easily see that
the optimal B&B algorithm will not work well as the
problem size increases. In this case, one can use the heu-
ristic algorithms. As can be seen in Table 3(b), the two
heuristic algorithms gave solutions within percentage
gap of 5% for the case instances.

In fact, the percentage gaps of the modified nearest
neighborhood heuristic (clustering heuristic) range from
2.66% (3.21%) to 4.36% (4.72%). Of the two heuristics,
the modified nearest neighborhood heuristic was slightly
better than the clustering heuristic in overall average gap.
However, the result of the paired t-test shows that the
two heuristics were not statistically different at a signifi-
cant level of 0.01. In fact, the overall average percentage
gaps of the modified nearest neighborhood heuristic and
the clustering heuristic were 3.61% and 3.95%, respec-
tively.

In summary, both types of algorithms work well for
the case data. In other words, the B&B algorithm gave
the optimal solutions very quickly since the number of
jobs included in each order ranges only from 6 to 12.
However, as reported in Kim and Lee (2009), the B&B
algorithm cannot give the optimal solutions for the in-
stances with more than 20 jobs, and hence the heuristic
algorithms are more appropriate for large-sized instant-
ces, especially when the solution is very critical.

Table 3. Test Results

(a) Branch and Bound Algorithm
Range

of inventory costs
Range

of backorder costs
CPU

Seconds

10~20%
20~30%
30~40%
40~50%

 0.03*
0.05
0.03

20~30%
30~40%
40~50%
50~60%

0.06
0.05
0.05

30~40%
40~50%
50~60%
60~70%

0.03
0.05
0.06

Average 0.05

Note: * Average CPU second out of 10 test instances.

(b) Heuristic Algorithms
Range

of inventory
costs

Range
of backorder

costs

Modified nearest
neighborhood

heuristic

Clustering
heuristic

10~20%
20~30%
30~40%
40~50%

 4.36*
3.25
3.27

4.72
3.53
3.75

20~30%
30~40%
40~50%
50~60%

3.26
4.00
4.35

3.56
4.20
4.67

30~40%
40~50%
50~60%
60~70%

4.20
2.66
3.13

4.36
3.21
3.54

Average 3.61 3.95

Notes: * Average percentage gap from the optimal solution
values out of 10 test instances.

5. CONCLUDING REMARKS

In this paper, we reported a case study on the com-
mon due-date assignment and sequencing problem in a
paper remanufacturing system that produces various
corrugated cardboards using collected waste papers un-
der the make-to-order environment. For a given set of
orders, therefore, the problem is to determine the com-
mon due-date as well as the job sequence on a single
machine for the objective of minimizing the sum of the
penalties associated with due-date assignment, earliness,
and tardiness. According to the characteristics of the
system, in particular, we considered the sequence-de-
pendent setup times. To solve the problem, we adopted
two types of algorithms: (a) optimal branch and bound
algorithm; and (b) heuristics. Computational experiments
were done on the data generated from the case, and the
results showed that both types of algorithms work well

Common Due-Date Assignment and Scheduling with Sequence-Dependent Setup Times
Vol 18, No 1, May 2012, pp.1-12, © 2012 KORMS 11

for the case instances. Although the branch and bound
algorithm gave the optimal solutions quickly, it is rec-
ommended to use the heuristic algorithms for large-sized
instances, especially when the solution time is critical.

For further research, it is needed to combine the
scheduling problem with the upper production planning
problem, which gives a core method for the integrated
planning and scheduling system of the paper remanufac-
turing company. Also, the meta-heuristics, such as simu-
lated annealing, tabu search, and genetic algorithm, can
be used to obtain better solutions for large-size instances.

REFERENCES

Baker, K. R. and G. D. Scudder, “On the assignment of
optimal due-dates,” Journal of the Operational Re-
search Society 40 (1989), 93-95.

Birman, M. and G. Mosheiov, “A note on due-date as-
signment in a two-machine flow-shop,” Computers
and Operations Research 31 (2004), 473-480.

Biskup, D. and H. Jahnke, “Common due-date assign-
ment for scheduling on a single machine with join-
tly reducible processing times,” International Jour-
nal of Production Economics 69 (2001), 317-322.

Bouchriha, H. M., and D’Ouhimmou, S., “Amours, “Lot
sizing problem on a paper machine under a cyclic
production approach,” International Journal of Pro-
duction Economics 105 (2007), 318-328.

Chen, D. W., S. Li, and G. C. Tang, “Single machine
scheduling with common due date assignment in a
group technology environment,” Mathematical and
Computer Modelling 25 (1997), 81-90.

Chen, Z. L., “Scheduling and common due date assign-
ment with earliness-tardiness penalties and batch
delivery costs,” European Journal of Operational
Research 93 (1996), 49-60.

Cheng, T. C. E., “A note on the common due-date as-
signment problem,” Journal of the Operational Re-
search Society 37 (1986), 1089-1091.

Cheng, T. C. E., “Common due-date assignment and
scheduling for a single processor to minimize the
number of tardy jobs,” Engineering Optimization
16 (1990), 129-136.

Cheng, T. C. E. and M. Y. Kovalyov, “Bath scheduling
and common due-date assignment on a single ma-
chine,” Discrete Applied Mathematics 70 (1996),
231-245.

Cheng, T. C. E., C. Oguz, and X. D. Qi, “Due-date as-
signment and single machine scheduling with com-
pressible processing times,” International Journal
of Production Economics 43 (1996), 29-35.

Cheng, T. C. E., Z. L. Chen, and N. V. Shakhlevich,
“Common due-date assignment and scheduling with
ready times,” Computers and Operations Research
29 (2002), 1957-1967.

De, P., J. B. Ghosh, and C. E. Wells, “On the multiple-
machine extension to a common due-date assign-

ment and scheduling problem,” Journal of the Op-
erational Research Society 42 (1991), 419-422.

Diamond, J. E. and T. C. E. Cheng, “Error bound for
common due date assignment and job scheduling
on parallel machines,” IIE Transactions 32 (2000),
445-448.

Dvir, S. and S. George, “Two due date assignment prob-
lems in scheduling a single machine,” Operations
Research Letters 34 (2006), 683-691.

Dvir, S., “Due date assignments and scheduling a single
machine with a general earliness and tardiness cost
function,” Computers and Operations Research 35
(2008), 1539-1545.

Gordon, V., J. M. Proth, and C. Chu, “A survey of the
state-of-the-art of the common due-date assignment
and scheduling research,” European Journal of
Operational Research 139 (2002), 1-25.

Gupta, D. and T. Magnusson, “The capacitated lot-siz-
ing scheduling problem with sequenced-dependent
setup costs and setup times,” Computers and Op-
erations Research 32 (2005), 727-747.

Hall, N. G., “Scheduling problems with generalized due
dates,” IIE Transactions 18 (1986), 220-222.

Kim, H.-C., J.-G. Kim, and D.-H. Lee, “A case study on
capacitated lot-sizing and scheduling in a paper
remanufacturing system,” Technical Report, De-
partment of Industrial Engineering, Hanyang Uni-
versity, Seoul, South Korea (2008).

Kim, J.-G. and D.-H. Lee, “Algorithms for common
due-date assignment and sequencing in a single ma-
chine with sequence-dependent setup times,” Jour-
nal of the Operational Research Society 60 (2009),
1264-1272.

Li, C.-L., G. Mosheiov, and U. Yovel, “An efficient
algorithm for minimizing earliness, tardiness, and
due-date costs for equal-sized jobs,” Computers
and Operations Research 35 (2008), 3612-3619.

Lund, R. T., “Remanufacturing,” Technology Review 87
(1984), 18-28.

Mosheiov, G., “A common due-date assignment prob-
lem on parallel identical machines,” Computers and
Operations Research 28 (2001), 719-732.

Ng, C. T. D., T. C. E. Cheng., M. Y. Kovalyov, and S. S.
Lam, “Single machine scheduling with a variable
common due date and resource-dependent process-
ing times,” Computers and Operations Research
30 (2003), 1173-1185.

Panwalkar, S. S., M. L. Smith, and A. Seidmann, “Com-
mon due-date assignment to minimize total penalty
for the one machine scheduling problem,” Opera-
tions Research 30 (1982), 391-399.

Quaddus, M. A., “A generalized model of optimal due-
date assignment by linear programming,” Journal
of the Operational Research Society 38 (1987),
353-359.

Rabadi, G., M. Mollaghasemi, and G. C. Anagnostopou-
los, “A branch-and-bound algorithm for the early/
tardy machine scheduling problem with a common

Kim, Kim, and Lee: Management Science and Financial Engineering
Vol 18, No 1, May 2012, pp.1-12, © 2012 KORMS 12

due-date and sequence-dependent setup time,” Com-
puters and Operations Research 31 (2004), 1727-
1751.

Xia, Y., B. Chen, and J. Yue, “Job sequencing and due
date assignment in a single machine shop with un-
certain processing times,” European Journal of Ope-
rational Research 184 (2008), 63-75.

Appendix A: AN EXAMPLE FOR PROPOSI-
TIONS 1, 2, 3 AND 4

Consider a partial sequence such as (*3124*) with 6
jobs, where processing times of jobs 1, 2, 3, 4, 5 and 6
are 1, 2, 3, 4, 5 and 6, respectively. The sequence de-
pendent setup times are s12 = 3, s21 = 5, s31 = 13, s24 = 1,
s14 = 3, and s32 = 8. Also, the penalties associate with
assigning common due-date, earliness and tardiness are
set to 2, 5 and 7, respectively (α = 5, β = 7 and γ = 2).

• Propositions 1 and 2: setting the optimal common

due-date
Optimal common due-date = C[k], where k = ⎡n · (β-
γ)/(α+β)⎤ = ⎡6 · (7-2)/(5+7)⎤ = 3.
• Proposition 3: calculate the positional weights

w[1] = n ⋅ γ = 2 · 6 = 12

w[2] = (j-1) ⋅ α + n ⋅ γ = (2-1) · 5+2 · 6 = 17
w[3] = (3-1) · 5 + 2 · 6 = 22
w[4] = β⋅(n-j+1) = 7 · (6-4+1) = 21
w[5] = 7 · (6-5+1) = 14
w[6] = 7 · (6-6+1) = 7

• Proposition 4: fathoming unnecessary solutions

- Objective value for the current partial sequence
(*3124*)
f(S) = w[r] ⋅ AP [r–1][r]+w[r +1] ⋅ AP [r][r+1]

+w[r+2] ⋅ AP [r+1][r+2]
= w[3] ⋅ AP [2][3] + w[4] ⋅ AP [3][4] + w[5] ⋅ AP [4][5]
= (2 ⋅ α+n ⋅ γ) ⋅ AP31 + 3 ⋅ β ⋅ AP12+2 ⋅ β ⋅ AP24
= (2 · 5+2 · 6) · 14+3 · 7 · 5+2 · 7 · 5 = 473

- Objective value for partial sequence (*3214*) after
interchanging the jobs 1 [r] and 2 [r + 1]
f(S′) = w[r] ⋅ AP [r–1][r]+w[r +1] ⋅ AP [r][r+1]

+ w[r+2] ⋅ AP [r+1][r+2]
= w[3] ⋅ AP [2][3]+w[4] ⋅ AP [3][4]+w[5] ⋅ AP [4][5]
= (2 ⋅ α+n ⋅ γ) ⋅ AP32+3 ⋅ β ⋅ AP21+2 ⋅ β ⋅ AP14
= (2 · 5+2 · 6) · 10+3 · 7 · 6+2 · 7 · 7 = 444

Then, f(S′)-f(S) = 444-473 < 0, and hence the node
with the smallest positional weight, that is, job 4 in
position [r+2] can be removed from further consid-
eration.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

