• Title/Summary/Keyword: invariant

Search Result 2,151, Processing Time 0.025 seconds

Binary Classification Method using Invariant CSP for Hand Movements Analysis in EEG-based BCI System

  • Nguyen, Thanh Ha;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.178-183
    • /
    • 2013
  • In this study, we proposed a method for electroencephalogram (EEG) classification using invariant CSP at special channels for improving the accuracy of classification. Based on the naive EEG signals from left and right hand movement experiment, the noises of contaminated data set should be eliminate and the proposed method can deal with the de-noising of data set. The considering data set are collected from the special channels for right and left hand movements around the motor cortex area. The proposed method is based on the fit of the adjusted parameter to decline the affect of invariant parts in raw signals and can increase the classification accuracy. We have run the simulation for hundreds time for each parameter and get averaged value to get the last result for comparison. The experimental results show the accuracy is improved more than the original method, the highest result reach to 89.74%.

Iris Recognition Based on a Shift-Invariant Wavelet Transform

  • Cho, Seongwon;Kim, Jaemin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.322-326
    • /
    • 2004
  • This paper describes a new iris recognition method based on a shift-invariant wavelet sub-images. For the feature representation, we first preprocess an iris image for the compensation of the variation of the iris and for the easy implementation of the wavelet transform. Then, we decompose the preprocessed iris image into multiple subband images using a shift-invariant wavelet transform. For feature representation, we select a set of subband images, which have rich information for the classification of various iris patterns and robust to noises. In order to reduce the size of the feature vector, we quantize. each pixel of subband images using the Lloyd-Max quantization method Each feature element is represented by one of quantization levels, and a set of these feature element is the feature vector. When the quantization is very coarse, the quantized level does not have much information about the image pixel value. Therefore, we define a new similarity measure based on mutual information between two features. With this similarity measure, the size of the feature vector can be reduced without much degradation of performance. Experimentally, we show that the proposed method produced superb performance in iris recognition.

Invariant Set Based Model Predictive Control of a Three-Phase Inverter System (불변집합에 기반한 삼상 인버터 시스템의 모델예측제어)

  • Lim, Jae-Sik;Park, Hyo-Seong;Lee, Young-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.2
    • /
    • pp.149-155
    • /
    • 2012
  • This paper provides an efficient model predictive control for the output voltage control of three-phase inverter system which includes output LC filters. Use of SVPWM (Space Vector Pulse-Width-Modulation) and the rotating d-q frame is made to obtain an input constrained dynamic model of the inverter system. From the measured/estimated output current and reference output voltage, corresponding equilibrium values of the inductor current and the control input are computed. Derivation of a feasible and invariant set around the equilibrium state is made and then a receding horizon strategy which steers the current state deep into the invariant set is proposed. In order to remove offset error, use of disturbance observer is made in the form of state estimator. The efficacy of the proposed method is verified through simulations.

Dual Branched Copy-Move Forgery Detection Network Using Rotation Invariant Energy in Wavelet Domain (웨이블릿 영역에서 회전 불변 에너지 특징을 이용한 이중 브랜치 복사-이동 조작 검출 네트워크)

  • Jun Young, Park;Sang In, Lee;Il Kyu, Eom
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.309-317
    • /
    • 2022
  • In this paper, we propose a machine learning-based copy-move forgery detection network with dual branches. Because the rotation or scaling operation is frequently involved in copy-move forger, the conventional convolutional neural network is not effectively applied in detecting copy-move tampering. Therefore, we divide the input into rotation-invariant and scaling-invariant features based on the wavelet coefficients. Each of the features is input to different branches having the same structure, and is fused in the combination module. Each branch comprises feature extraction, correlation, and mask decoder modules. In the proposed network, VGG16 is used for the feature extraction module. To check similarity of features generated by the feature extraction module, the conventional correlation module used. Finally, the mask decoder model is applied to develop a pixel-level localization map. We perform experiments on test dataset and compare the proposed method with state-of-the-art tampering localization methods. The results demonstrate that the proposed scheme outperforms the existing approaches.

Time-Invariant Stock Movement Prediction After Golden Cross Using LSTM

  • Sumin Nam;Jieun Kim;ZoonKy Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.59-66
    • /
    • 2023
  • The Golden Cross is commonly seen as a buy signal in financial markets, but its reliability for predicting stock price movements is limited due to market volatility. This paper introduces a time-invariant approach that considers the Golden Cross as a singular event. Utilizing LSTM neural networks, we forecast significant stock price changes following a Golden Cross occurrence. By comparing our approach with traditional time series analysis and using a confusion matrix for classification, we demonstrate its effectiveness in predicting post-event stock price trends. To conclude, this study proposes a model with a precision of 83%. By utilizing the model, investors can alleviate potential losses, rather than making buy decisions under all circumstances following a Golden Cross event.

EXTREMELY MEASURABLE SUBALGEBRAS

  • Ayyaswamy, S.K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.7-10
    • /
    • 1985
  • For each a.mem.S and f.mem.m(S), denote by $l_{a}$ f(s)=f(as) for all s.mem.S. If A is a norm closed left translation invariant subalgebra of m(S) (i.e. $l_{a}$ f.mem.A whenever f.mem.A and a.mem.S) containing 1, the constant ont function on S and .phi..mem. $A^{*}$, the dual of A, then .phi. is a mean on A if .phi.(f).geq.0 for f.geq.0 and .phi.(1) = 1, .phi. is multiplicative if .phi. (fg)=.phi.(f).phi.(g) for all f, g.mem.A; .phi. is left invariant if .phi.(1sf)=.phi.(f) for all s.mem.S and f.mem.A. It is well known that the set of multiplicative means on m(S) is precisely .betha.S, the Stone-Cech compactification of S[7]. A subalgebra of m(S) is (extremely) left amenable, denoted by (ELA)LA if it is nom closed, left translation invariant containing contants and has a multiplicative left invariant mean (LIM). A semigroup S is (ELA) LA, if m(S) is (ELA)LA. A subset E.contnd.S is left thick (T. Mitchell, [4]) if for any finite subser F.contnd.S, there exists s.mem.S such that $F_{s}$ .contnd.E or equivalently, the family { $s^{-1}$ E : s.mem.S} has finite intersection property.y.

  • PDF

Relative Localization for Mobile Robot using 3D Reconstruction of Scale-Invariant Features (스케일불변 특징의 삼차원 재구성을 통한 이동 로봇의 상대위치추정)

  • Kil, Se-Kee;Lee, Jong-Shill;Ryu, Je-Goon;Lee, Eung-Hyuk;Hong, Seung-Hong;Shen, Dong-Fan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.173-180
    • /
    • 2006
  • A key component of autonomous navigation of intelligent home robot is localization and map building with recognized features from the environment. To validate this, accurate measurement of relative location between robot and features is essential. In this paper, we proposed relative localization algorithm based on 3D reconstruction of scale invariant features of two images which are captured from two parallel cameras. We captured two images from parallel cameras which are attached in front of robot and detect scale invariant features in each image using SIFT(scale invariant feature transform). Then, we performed matching for the two image's feature points and got the relative location using 3D reconstruction for the matched points. Stereo camera needs high precision of two camera's extrinsic and matching pixels in two camera image. Because we used two cameras which are different from stereo camera and scale invariant feature point and it's easy to setup the extrinsic parameter. Furthermore, 3D reconstruction does not need any other sensor. And the results can be simultaneously used by obstacle avoidance, map building and localization. We set 20cm the distance between two camera and capture the 3frames per second. The experimental results show :t6cm maximum error in the range of less than 2m and ${\pm}15cm$ maximum error in the range of between 2m and 4m.

Robust Audio Copyright Protection Technology to the Time Axis Attack (시간축 공격에 강인한 오디오 저작권보호 기술)

  • Bae, Kyoung-Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.4
    • /
    • pp.201-212
    • /
    • 2009
  • Even though the spread spectrum method is known as most robust algorithm to general attacks, it has a drawback to the time axis attack. In this paper, I proposed a robust audio copyright protection algorithm which is robust to the time axis attack and has advantages of the spread spectrum method. Time axis attack includes the audio length variation attack with same pitch and the audio frequency variation attack. In order to detect the embedded watermark by the spread spectrum method, the detection algorithm should know the exact rate of the time axis attack. Even if there is a method to know the rate, it needs heavy computational resource and it is not possible to implement. In this paper, solving this problem, the audio signal is transformed into time-invariant domain, and the spread spectrum watermark is embedded into the audio in the domain. Therefore the proposed algorithm has the advantages of the spread spectrum method and it is also robust to the time axis attack. The time-invariant domain process is that the audio is arranged by log scale time axis, and then, the Fourier transform is taken to the audio in the log scale time axis. As a result, the algorithm can get the time-invariant watermark signal.

  • PDF

Texture Classification Using Rotation Invariant Local Directional Pattern (Rotation Invariant Local Directional Pattern을 이용한 텍스처 분류 방법)

  • Lee, Tae Hwan;Chae, Ok Sam
    • Convergence Security Journal
    • /
    • v.17 no.3
    • /
    • pp.21-29
    • /
    • 2017
  • Accurate encoding of local patterns is a very important factor in texture classification. However, LBP based methods w idely studied have fundamental problems that are vulnerable to noise. Recently, LDP method using edge response and dire ction information was proposed in facial expression recognition. LDP is more robust to noise than LBP and can accommod ate more information in it's pattern code, but it has drawbacks that it is sensitive to rotation transforms that are critical to texture classification. In this paper, we propose a new local pattern coding method called Rotation Invariant Local Direc tional Pattern, which combines rotation-invariant transform to LDP. To prove the texture classification performance of the proposed method in this paper, texture classification was performed on the widely used UIUC and CUReT datasets. As a result, the proposed RILDP method showed better performance than the existing methods.

Preliminary Study on Interplanetary Trajectory Design using Invariant Manifolds of the Circular Restricted Three Body Problem (원형 제한 3체 문제의 불변위상공간을 이용한 행성간 궤적설계 기초 연구)

  • Jung, Okchul;Ahn, Sangil;Chung, Daewon;Kim, Eunkyou;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.692-698
    • /
    • 2015
  • This paper represents a trajectory design and analysis technique which uses invariant manifolds of the circular restricted three body problem. Instead of the classical patched conic method based on 2-body problem, the equation of motion and dynamical behavior of spacecraft in the circular restricted 3-body problem are introduced, and the characteristics of Lyapunov orbits near libration points and their invariant manifolds are covered in this paper. The trajectories from/to Lyapunov orbits are numerically generated with invariant manifolds in the Earth-moon system. The trajectories in the Sun-Jupiter system are also analyzed with various initial conditions in the boundary surface. These methods can be effectively applied to interplanetary trajectory designs.