• 제목/요약/키워드: intracellular uptake

검색결과 174건 처리시간 0.028초

JPH203, a selective L-type amino acid transporter 1 inhibitor, induces mitochondria-dependent apoptosis in Saos2 human osteosarcoma cells

  • Choi, Dae Woo;Kim, Do Kyung;Kanai, Yoshikatsu;Wempe, Michael F.;Endou, Hitoshi;Kim, Jong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.599-607
    • /
    • 2017
  • Most normal cells express L-type amino acid transporter 2 (LAT2). However, L-type amino acid transporter 1 (LAT1) is highly expressed in many tumor cells and presumed to support their increased growth and proliferation. This study examined the effects of JPH203, a selective LAT1 inhibitor, on cell growth and its mechanism for cell death in Saos2 human osteosarcoma cells. FOB human osteoblastic cells and Saos2 cells expressed LAT1 and LAT2 together with their associating protein 4F2 heavy chain, but the expression of LAT2 in the Saos2 cells was especially weak. JPH203 and BCH, a non-selective L-type amino acid transporter inhibitor, potently inhibited L-leucine uptake in Saos2 cells. As expected, the intrinsic ability of JPH203 to inhibit L-leucine uptake was far more efficient than that of BCH in Saos2 cells. Likewise, JPH203 and BCH inhibited Saos2 cell growth with JPH203 being superior to BCH in this regard. Furthermore, JPH203 increased apoptosis rates and formed DNA ladder in Saos2 cells. Moreover, JPH203 activated the mitochondria-dependent apoptotic signaling pathway by upregulating pro-apoptotic factors, such as Bad, Bax, and Bak, and the active form of caspase-9, and downregulating anti-apoptotic factors, such as Bcl-2 and Bcl-xL. These results suggest that the inhibition of LAT1 activity via JPH203, which may act as a potential novel anti-cancer agent, leads to apoptosis mediated by the mitochondria-dependent intrinsic apoptotic signaling pathway by inducing the intracellular depletion of neutral amino acids essential for cell growth in Saos2 human osteosarcoma cells.

Pyruvate Protection against Endothelial Cytotoxicity Induced by Blockade of Glucose Uptake

  • Chung, Se-Jin;Lee, Se-Hee;Lee, Yong-Jin;Park, Hyoung-Sook;Bunger, Rolf;Kang, Young-Hee
    • BMB Reports
    • /
    • 제37권2호
    • /
    • pp.239-245
    • /
    • 2004
  • We have previously demonstrated that the redox reactant pyruvate prevents apoptosis in the oxidant model of bovine pulmonary artery endothelial cells (BPAEC), and that the anti-apoptotic mechanism of pyruvate is mediated in part via the mitochondrial matrix compartment. However, cytosolic mechanisms for the cytoprotective feature of pyruvate remain to be elucidated. This study investigated the pyruvate protection against endothelial cytotoxicity when the glycolysis inhibitor 2-deoxy-D-glucose (2DG) was applied to BPAEC. Millimolar 2DG blocked the cellular glucose uptake in a concentration- and time-dependent manner with >85% inhibition at $\geq$5 mM within 24 h. The addition of 2DG evoked BPAEC cytotoxicity with a substantial increase in lipid peroxidation and a marked decrease in intracellular total glutathione. Exogenous pyruvate partially prevented the 2DG-induced cell damage with increasing viability of BPAEC by 25-30%, and the total glutathione was also modestly increased. In contrast, 10 mM L-lactate, as a cytosolic reductant, had no effect on the cytotoxicity and lipid peroxidation that are evoked by 2DG. These results suggest that 2DG toxicity may be a consequence of the diminished potential of glutathione antioxidant, which was partially restored by exogenous pyruvate but not L-lactate. Therefore, pyruvate qualifies as a cytoprotective agent for strategies that attenuate the metabolic dysfunction of the endothelium, and cellular glucose oxidation is required for the functioning of the cytosolic glutathione/NADPH redox system.

토끼 심방근에서 Na-Ca 교환 전류에 대한 Bay K, cAMP, Isoprenaline 효과 (Effects of Bay K, cAMP and Isoprenaline on the Na-Ca Exchange Current of Single Rabbit Atrial Cells)

  • 호원경;엄융의
    • The Korean Journal of Physiology
    • /
    • 제24권2호
    • /
    • pp.377-388
    • /
    • 1990
  • Ca movements during the late plateau phase in rabbit atrium implicate Na-Ca exchange. In single atrial cells isolated from the rabbit the properties of the inward current of Na-Ca exchange were investigated using the whole cell voltage clamp technique. The inward currents were recorded during repolarization following brief 2 ms depolarizing pulse to +40 mV from a holding potential of -70 mV. Followings are the results obtained: 1) When stimulated every 30 sec, the inward currents were activated and reached peak values $6{\sim}12\;ms$ after the beginning of depolarizing pulse. The mean current amplitude was 342 pA/cell. 2) The current decayed spontaneously from the peak activation and the timecourse of the relaxation showed two different phases: fast and slow phase. 3) The recovery of the inward current was tested by paired pulse of various interval. The peak current recovered exponentialy with a time course similar to that of Ca current recovery. 4) Relaxation timecourse was also affected by pulse interval and time constant was reduced almost linearly according to the decrease of pulse interval between 30 sec and 1 sec. 5) The peak inward current was increased by long prepulse stimulation, Bay K, isoprenaline or c-AMP. 6) The relaxation time constant of the inward current was prolonged by Bay K or c-AMP, and shortened by isoprenaline. From the above results, it could be concluded that increase of the calcium current potentiates and prolongs intracellular calcium transients, while shortening of the timecourse by isoprenaline or short interval stimulations might be due to the facilitation of Ca uptake by SR.

  • PDF

Localization of Immunoreactive Luteinizing Hormone in Aging Rat Brain

  • Kim, Kwang-Sik;Song, Ji-Hoon;Kang, Hee-Kyoung;Kang, Ji-Hoon;Park, Deok-Bae;Lee, Sung-Ho;Lee, Young-Ki
    • 한국발생생물학회지:발생과생식
    • /
    • 제14권3호
    • /
    • pp.171-177
    • /
    • 2010
  • A recent report demonstrated that in human aging brain after menopause/andropause luteinizing hormone (LH) is localized in the cytoplasm of pyramidal neurons of hippocampus and a significant increase of LH is also detected in the cytoplasm of pyramidal neurons and neurofibrillary tangles of Alzheimer's disease brain compared to age-matched control brain. It was suggested that the decreased steroid hormone production and the resulting LH expression in the neurons vulnerable to Alzheimer's disease pathology may have some relevance to the development of Alzheimer's disease. It is, however, unclear whether the presence of LH in neurons of human aging and Alzheimer's disease brain is due to intracellular LH expression or to LH uptake from extracellular sources, since gonadotropins are known to cross the blood brain barrier. Moreover, there is no report by using the brain of experimental animal that LH is expressed in such neurons as found in the human brain. In the present study, we found that LH immunoreactivity is localized in the pyramidal neurons of cerebral cortex and hippocampus of 12 and 18 months old rats but can not detect any immunoreactivity for LH in the young adult (3-5 months old) rats. To confirm that these LH immunoreactivity results from de novo synthesis in the brain but not the uptake from extracellular space, we performed RT-PCR and found that mRNA for LH is detected in several regions of brain including cerebral cortex and hippocampus. These findings suggest us that LH expression in old rat brain may play an important role in aging process of rat brain.

Amitriptyline과 Imipramine이 호중구에서의 Superoxide 생성, Myeloperoxidase 유리, Leukotriene $B_4$생성과 칼슘 동원에 나타내는 영향 (Effects of Amitriptyline and Imipramine on Superoxide Generation, Myeloperoxidase Release, Leukotriene $B_4$ in Human Neutrophils)

  • 신용규;이정수;이광수
    • 대한약리학회지
    • /
    • 제31권1호
    • /
    • pp.123-133
    • /
    • 1995
  • 삼환계 항우울제들은 calmodulin 억제 작용을 갖고 있으며, 칼슘 유입, 산화성 인산화 반응 및 ATPase 활성도를 억제하는 것으로 제시되고 있지만 사람 호중구에서의 기능 표현에 대한 효과는 밝혀져 있지 않다. 본 연구에서는 amitriptyline, imipramine과 doxepine이 superoxide와 $H_2O_2$ 생성, myeloperoxidase 유리, leukotriene $B_4$ 생성과 세포내 칼슘의 상승에 나타나는 효과를 조사하였다. 변성된 IgG에 의하여 활성화된 호중구에서 superoxide와 $H_2O_2$ 생성은 amitriptyline, imipramine과 doxepine에 의하여 억제되었고 EDTA, EGTA, verapamil과 bepredil은 superoxide 생성을 억제하였다. Chlorpromazine, trifluoperazine, staurosporine 및 H-7 또한 superoxide 생성을 억제하였다. PMA에 의한 superoxide 생성은 amitriptyline, imipramine과 doxepine, chlorpromazine과 H-7에 의하여 억제되었다. Amitriptyline, imipramine, chlorpromazine과 trifluoperazine은 변성된 IgG에 의한 myeloperoxidase 유리를 억제하였다. 변성된 IgG에 의하여 활성화된 호중구에서 $LTB_4$와 5-HETE 형성은 amitriptyline, imipramine과 doxepine에 의하여 억제되었다. 변성된 IgG에 의한 세포내 칼슘의 증가는 amitriptyline, imipramine, doxepine, chlorpromazine과 EGTA에 의하여 억제되었고, verapamil은 세포내 칼슘의 증가를 약간 억제하였으나 H-7은 세포내 칼슘의 증가에 영향이 없었다. 이상의 결과로부터 변성된 IgG에 의하여 활성화된 호중구에서의 respiratory burst, myeloperoxidase 유리와 LTB, 생성에 대한 amitriptyline, imipramine과 doxepine의 억제효과는 칼슘동원, calmodulin과 protein kinase C의 억제에 기인할 것으로 추정된다.

  • PDF

Novel Antioxidants and Atherosclerosis

  • Parthasarathy Sampath;Santanam Nalini
    • 한국식품영양과학회:학술대회논문집
    • /
    • 한국식품영양과학회 2004년도 Annual Meeting and International Symposium
    • /
    • pp.265-270
    • /
    • 2004
  • Coronary heart disease (CHD) has been the number one killer in western society for a long time, and CHD in most instances is due to atherosclerosis. One of the earliest events in atherogenesis is the intracellular accumulation of lipids, particularly cholesterol esters, in the aortic intima. The lipids presumably came from the uptake of plasma lipoproteins, particularly from LDL. These foam cells were identified as being predominantly as macrophages. Currently, it is believed that oxidation of low density lipoprotein (LDL) might contribute to the generation of foam cells. An outcome of the oxidation hypothesis is that the consumption of antioxidants would be beneficial. In this study, Boldine, an alkaloid of Peumus boldus was tested for their antioxidant potency both in, in vitro oxidation system and in mouse models. Boldine decreased the ex-vivo oxidation of Low-density lipoprotein (LDL). In vivo studies were performed to study the effect of these compounds on the atherosclerotic lesion formation in LDL r-/- mice. Three groups of LDL r-/- mice (N=12 each) were fed an atherogenic diet. Group 1 was given vehicle and group 2 and 3 were given 1 and 5 mg of Boldine/day in addition to the atherogenic diet. The results indicated that there was a decrease in lesion formation reaching a 40% reduction due to Boldine compared to controls. The in vivo tolerance of Boldine in humans (has been used as an herbal medicine in other diseases) should make it an attractive alternative to vitamin E.

  • PDF

Affinity between TBC1D4 (AS160) phosphotyrosine-binding domain and insulin-regulated aminopeptidase cytoplasmic domain measured by isothermal titration calorimetry

  • Park, Sang-Youn;Kim, Keon-Young;Kim, Sun-Min;Yu, Young-Seok
    • BMB Reports
    • /
    • 제45권6호
    • /
    • pp.360-364
    • /
    • 2012
  • Uptake of circulating glucose into the cells happens via the insulin-mediated signalling pathway, which translocates the glucose transporter 4 (GLUT4) vesicles from the intracellular compartment to the plasma membrane. Rab GTPases are involved in this vesicle trafficking, where Rab GTPases-activating proteins (RabGAP) enhance the GTP to GDP hydrolysis. TBC1D4 (AS160) and TBC1D1 are functional RabGAPs in the adipocytes and the skeletonal myocytes, respectively. These proteins contain two phosphotyrosine-binding domains (PTBs) at the amino-terminus of the catalytic RabGAP domain. The second PTB has been shown to interact with the cytoplasmic region of the insulin-regulated aminopeptidase (IRAP) of the GLUT4 vesicle. In this study, we quantitatively measured the ${\sim}{\mu}M$ affinity ($K_D$) between TBC1D4 PTB and IRAP using isothermal titration calorimetry, and further showed that IRAP residues 1-49 are the major region mediating this interaction. We also demonstrated that the IRAP residues 1-15 are necessary but not sufficient for the PTB interaction.

In Situ Single Cell Monitoring by Isocyanide-Functionalized Ag and Au Nanoprobe-Based Raman Spectroscopy

  • Lee, So-Yeong;Jang, Soo-Hwa;Cho, Myung-Haing;Kim, Young-Min;Cho, Keun-Chang;Ryu, Pan Dong;Gong, Myoung-Seon;Joo, Sang-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권9호
    • /
    • pp.904-910
    • /
    • 2009
  • The development of effective cellular imaging requires a specific labeling method for targeting, tracking, and monitoring cellular/molecular events in the living organism. For this purpose, we studied the cellular uptake of isocyanide-functionalized silver and gold nanoparticles by surface-enhanced Raman scattering (SERS). Inside a single mammalian cell, we could monitor the intracellular behavior of such nanoparticles by measuring the SERS spectra. The NC stretching band appeared clearly at ${\sim}2,100cm^{-1}$ in the well-isolated spectral region from many organic constituents between 300 and 1,700 or 2,800 and $3,600cm^{-1}$. The SERS marker band at ${\sim}2,100cm^{-1}$ could be used to judge the location of the isocyanide-functionalized nanoparticles inside the cell without much spectral interference from other cellular constituents. Our results demonstrate that isocyanide-modified silver or gold nanoparticle-based SERS may have high potential for monitoring and imaging the biological processes at the single cell level.

Plasmid-Mediated Arsenical and Antimonial Resistance Determinants (ars) of Pseudomonas sp. KM20

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.31-38
    • /
    • 2002
  • Bacteria have evolved various types of resistance mechanism to toxic heavy metals, such as arsenic and antimony. An arsenical and antimonial resistant bacterium was isolated from a shallow creek draining a coal-mining area near Taebaek City, in Kangwon-Do, Korea. The isolated bacterium was identified and named as Pseudomonas sp. KM20 after biochemical and physiological studies were conducted. A plasmid was identified and its function was studied. Original cells harboring the plasmid were able to grow in the presence of 15 mM sodium arsenite, while the plasmid-cured (plasmidless) strain was sensitive to as little as 0.5 mM sodium arsenate. These results indicated that the plasmid of Pseudomonas sp. KM20 does indeed encode the arsenic resistance determinant. In growth experiments, prior exposure to 0.1 mM arsenate allowed immediate growth when they were challenged with 5 mM arsenate, 5 mM arsenite, or 0.1 mM antimonite. These results suggested that the arsenate, arsenite, and antimonite resistance determinants of Pseudomonas sp. KM20 plasmid were indeed inducible. When induced, plasmid-bearing resistance cells showed a decreased accumulation $of\;73^As$ and showed an enhanced efflux $of\;^73As$. These results suggested that plasmid encoded a transport system that extruded the toxic metalloids, resulting in the lowering of the intracellular concentration of toxic oxyanion. In a Southern blot study, hybridization with an E. coli R773 arsA-specific probe strongly suggested the absence of an arsA cistron in the plasmid-associated arsenical and antimonial resistance determinant of Pseudomonas sp. KM20.

원핵세포에서 신호물질 및 조절인자로서의 3',5'-Cyclic Adenosine Monophosphate의 역할 (3',5'-Cyclic Adenosine Monophosphate (cAMP) as a Signal and a Regulatory Compound in Bacterial Cells)

  • 천세진;석영재;이규호
    • 한국미생물·생명공학회지
    • /
    • 제34권4호
    • /
    • pp.289-298
    • /
    • 2006
  • 3',5'-cyclic adenosine monophosphate (cAMP) is an important molecule, which mediates diverse cellular processes. For example, it is involved in regulation of sugar uptake/catabolism, DNA replication, cell division, and motility in various acterial species. In addition, cAMP is one of the critical regulators for syntheses of virulence factors in many pathogenic bacteria. It is believed that cAMP acts as a signal for environmental changes as well as a regulatory factor for gene expressions. Therefore, intracellular concentration of cAMP is finely modulated by according to its rates of synthesis (by adenylate cyclase), excretion, and degradation (by cAMP phosphodiesterase). In the present review, we discuss the bacterial physiological characteristics governed by CAMP and the molecular mechanisms for gene regulation by cAMP. Furthermore, the effect of cAMP on phosphotransferase system is addressed.