• Title/Summary/Keyword: intracellular survival

Search Result 191, Processing Time 0.031 seconds

Effect of Different Infusion Frequency of Liquid Nitrogen on Actin Filament, Mitochondria, Apoptosis and Development in Mouse 2-Cell Embryo after Freezing and Thawing (생쥐 배아 동결시 액체질소의 분사속도가 해빙후 배아의 발달, 미세섬유, 미토콘드리아 및 세포자연사에 미치는 영향)

  • 손인표;안학준;계명찬;최규완;민철기;강희규;이호준;권혁찬
    • Development and Reproduction
    • /
    • v.4 no.2
    • /
    • pp.161-173
    • /
    • 2000
  • The aim of this study was to assess the effect of the frequency of the L$N_2$ infusion on the ultrastructure, metabolism and development of the embryo after freezing and thawing by computerized cell freezer. Two-cell embryos of ICR mouse were randomly allocated into fresh (control), high-frequency freezing (group 1) and low-frequency freezing (group 2). For fresh and frozen-thawed intact 2-cell embryos, total ceil number in the blastocyst was counted by fluorescent microscope after Hoechst 33258 staining. Relative amount of $H_2O$$_2$ was measured by DCHFDA. Intracellular location and membrane potential of the mitochondria were evaluated by staining with rhodamine 123 and JC-1. The structure of actin filament was also evaluated by confocal microscope. DNA fragmentation was assessed by TUNEL method after development into blastocyst. The survival rate of intact embryo was higher in group 1 than group 2 (50.7% vs. 34.6% respectively, p<0.05). The blastocyst developmental rate was significantly low in group 2 (86.7%, 76.7% vs. 44.0% for control, group 1 and group 2 respectively, p<0.05). Total cell number in the blastocyst was also significantly lower in group 2 than control (79.5$\pm$12.9, 71.6$\pm$8.0, and 62.5$\pm$4.7 for control, group 1 and group 2 respectively, p<0.05). The relative amount of $H_2O$$_2$ was higher in group 2 than other groups (15.3$\pm$3.0, 16.6$\pm$1.6 vs. 23.4$\pm$1.8, p<0.05). After JC-1 staining, relative intensity of mitochondria with high membrane potential was significantly lower in group 2 than control and group 1 (17.2$\pm$3.8, 17.4$\pm$1.3 vs. 13.2$\pm$2.0, p<0.05). In group 2, partial deletion and aggregation of the actin filament was found. DNA fragmentation rate was also hieher for group 2 versus other groups (30.8%, 36.0% vs. 65.6%, p<0.05). The frequency of the L$N_2$ infusion is an important factor for the development of frozen-thawed mouse embryo. High-frequency infusion may prevent damages of cytoskeleton and mitochondria in the embryo probably by preventing the temperature fluctuation during dehydration phase. We speculate that the application of high-frequency infusion method in human embryo may be promising.

  • PDF

Lung Preservation Study for Above 20 Hours of LPDG Solution in Canine Lung Allotransplactation (폐이식 실험견에서 LPDG용액을 이용한 20시간 이상 폐보존효과 관찰)

  • Park, Chang-Gwon;Gwon, Geon-Yeong;Yu, Yeong-Seon
    • Journal of Chest Surgery
    • /
    • v.30 no.10
    • /
    • pp.949-960
    • /
    • 1997
  • Background. Limited ischemic tolerance of the lung has remained one of the factors that limits the expansion of pulmonary transplantation as a treatment for end-stage pulmonary disease. Numerous studies on safe long term preservation for lung transplantation has been performed for the purpose of developing ideal preservation solution with extracellular type or intracellular type solutions. In this. study, we examined the efficacy of L DG solution in lung preservation longer than 20 hours by comparison with modified Euro-Collins solution. Iwethods. Thirty-(our adult mongrel dogs were divided into two groups. Donor lungs were flushed with LPDG solution(n=9) or modified Euro-Collins(MEC) solution(n=8) and stored for 24 hours at 1$0^{\circ}C$. All donor lungs were perfused through the pulmonary arteries with solutions containing prostaglandin El and verapamil. Left canine lung allotransplantations wereperformed. Assessment(hemodynamic indices and arterial blood gas analysis) of left implanted lung was made by occluding the right pulmonary artery for ten minutes using pulmonary artery Cuff. Assessment was repeated at the interval of 30 minutes, one hour, and two hours later after reperfusion and then chest X-ray, computed tomogram and lung perfusion scan were obtained. In survival dogs follow-up studies were done with assessment with chest X-ray, computed tomogram of the chest and lung perfusion scan on 7th day postoperatively. After preservation above 20 hours, pathological examinations for ultrastructural findings on right lung were performed in each group. Results. With respect to arterial oxygen tension, LPDG group was superior to MEC but there was no statistical significance for 2 hours after reperfusion. Mean pulmonary artery pressure was less increased(p < 0.05) and cardiac output higher(p <0.05) than MEC group until 2 hours after reperfusion. After 2 hours of reperfusion, both groups showed transplanted lung function deteriorated gradually. Perfusion scan of the transplanted lung in LPDG group showed better perfusion rate in immediate post-reperfusion, 3 days and 7 days later respectively but there was no statistical significance and corelation with PaO2 and computed tomoRravhic views. In scanning electron microscopy of pulmonary artery after preservation, LPDG group relatively shows less irregular protrusion of the inner surface of endothelial cell of poulmonary artery than MEC group. Conclusions, e concluded that LPDG solution can offer safe lung preservation above 20 hours with adequate immunosuppressive therapy and prevention of the infection.

  • PDF

Physiological Ecology of parasitic Dinoflagellate Amoebophrya and Harmful Algal Blooms (기생성 와편모류 Amoebophrya의 생리 생태적 특성과 적조)

  • 박명길
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.181-194
    • /
    • 2002
  • Parasitism is a one-sided relationship between two organisms in which one benefits at the expense of the other. Parasitic dinoflagellates, particularly species of Amoebophrya, have long been thought to be a potential biological agent for controlling harmful algal bloom(HAB). Amoebophrya infections have been reported for over 40 species representing more than 24 dinoflagellate genera including a few toxic species. Parasitic dinoflagellates Amoebophrya spp. have a relatively simple life cycle consisting of an infective dispersal stage (dinospore), an intracellular growth stage(trophont), and an extracellular reproductive stage(vermiform). Biology of dinospores such as infectivity, survival, and ability to successfully infect host cells differs among dinoflagellate host-parasite systems. There are growing reports that Amoebophrya spp.(previously, collectively known as Amoebophrya ceratii) exhibit the strong host specificity and would be a species complex composed of several host-specific taxa, based on the marked differences in host-parasite biology, cross infection, and molecular genetic data. Dinoflagellates become reproductively incompetent and are eventually killed by the parasite once infected. During the infection cycle of the parasite, the infected host exhibits ecophysiologically different patterns from those of uninfected host in various ways. Photosynthetic performance in autotrophic dinoflagellates can be significantly altered following infection by parasitic dinoflagellate Amoebophrya, with the magnitude of the effects over the infection cycle of the parasite depending on the site of infection. Parasitism by the parasitic dinoflagellate Amoebophrya could have significant impacts on host behavior such as diel vertical migration. Parasitic dinoflagellates may not only stimulate rapid cycling of dissolved organic materials and/or trace metals but also would repackage the relatively large sized host biomass into a number of smaller dinospores, thereby leading to better retention of host's material and energy within the microbial loop. To better understand the roles of parasites in plankton ecology and harmful algal dynamics, further research on a variety of dinoflagellate host-parasite systems is needed.

Effect of Moutan Cortex Radicis on gene expression profile of differentiated PC12 rat cells oxidative-stressed with hydrogen peroxide (모단피의 PC12 cell 산화억제 효과 및 neuronal 유전자 발현 profile 분석에 대한 연구)

  • Kim Hyun Hee;Rho Sam Woong;Na Youn Gin;Bae Hyun Su;Shin Min Kyu;Kim Chung Suk;Hong Moo Chang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.529-541
    • /
    • 2003
  • Yukmijihwang-tang has been widely used as an and-aging herbal medicine for hundred years in Asian countries. Numerous studies show that Yukmijihwangtang has anti-oxidative effect both in vivo and in vitro. It has been reported that Moutan Cortex Radicis extract (MCR) was the most effective herb in Yukmijihwang-tang on undifferentiated PC12 cells upon oxidative-stressed with hydrogen peroxide. The purpose of this study is to; 1) evaluate the recovery of neuronal damage by assessing the anti-oxidant effect of MCR on PC12 cells differentiated with nerve growth factor (NGF), 2) identify candidate genes responsible for anti-oxidative effect on differentiated PC12 cells by oligonucleotide chip microarray. PC12 cells, which were differentiated by treating with NGF, were treated without or with hydrogen peroxide in the presence or absence of various concentration of MCR. Cell survival was determined by using MTS assay. Measurement of intracellular reactive oxygen species (ROS) generation was determined using the H2DCFDA assay The viability of cells treated with MCR was significantly recovered from stressed PC12 cell. In addition, wide rage of concentrations of MCR shows dose-dependent inhibitory effect on ROS production in oxidative-stressed cells. Total RNAs of cells without treatment(Control group), only treated with H₂O₂ (stressed group) and treated with both H₂O₂ and of MCR (MCR group) were isolated, and cDNAs was synthesized using oligoT7(dT) primer. The fragmented cRNAs, synthesized from cDNAs, were applied to Affymetrix GeneChip Rat Neurobiology U34 Array. mRNA of Calcium/calmodulin-dependent protein kinase II delta subunit(CaMKII), neuron glucose transporter (GLUT3) and myelin/oligodendrocyte glycoprotein(MOG) were downregulated in Stressed group comparing to Control group. P2X2-5 receptor (P2X2R-5), P2X2-4 receptor (P2X2R-4), c-fos, 25 kDa synaptosomal attachment protein(SNAP-25a) and GLUT3 were downregulated, whereas A2 adenosine receptor (A2AR), cathechol-O-methyltransferase(COMT), glucose transporter 1 (GLUT1), EST223333, heme oxygenase (HO), VGF, UI-R-CO-ja-a-07-0-Ul.s1 and macrophage migration inhibitory factor (MIF) were upregulated in MCA group comparing to Control group. Expression of Putative potassium channel subunit protein (ACK4), P2X2A-5, P2X2A-4, Interferon-gamma inducing factor isoform alpha precursor (IL-18α), EST199031, P2XR, P2X2 purinoceptor isoform e (P2X2R-e), Precursor interleukin 18 (IL-18) were downregulated, whereas MOO, EST223333, GLUT-1, MIF, Neuronatin alpha, UI-R-C0-ja-a-07-0-Ul.s1, A2. adenosine receptor, COMT, neuron-specific enolase (NSE), HO, VGF, A rat novel protein which is expressed with nerve injury (E12625) were upregulated in MCR group comparing to Stressed group. The results suggest that decreased viability and AOS production of PC12 cell by H₂O₂ may be, at lease, mediated by impaired glucose transporter expression. It is implicated that the MCR treatment protect PC12 cell from oxidative stress via following mechanisms; improving glucose transport into the cell, enhancing expression of anti-oxidative genes and protecting from dopamine cytotoxicity by increment of COMT and MIF expression. The list of differentially expressed genes may implicate further insight on the action and mechanism behind the anti-oxidative effects of herbal extract Moutan Cortex Radicis.

Role of Citrate Synthase in Acetate Utilization and Protection from Stress-Induced Apoptosis

  • Lee, Yong-Joo;Kang, Hong-Yong;Maeng, Pil Jae
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.39-41
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has been shown to contain three isoforms of citrate synthase (CS). The mitochondrial CS, Cit1, catalyzes the first reaction of the TCA cycle, i.e., condensation of acetyl-CoA and oxaloacetate to form citrate [1]. The peroxisomal CS, Cit2, participates in the glyoxylate cycle [2]. The third CS is a minor mitochondrial isofunctional enzyme, Cit3, and related to glycerol metabolism. However, the level of its intracellular activity is low and insufficient for metabolic needs of cells [3]. It has been reported that ${\Delta}cit1$ strain is not able to grow with acetate as a sole carbon source on either rich or minimal medium and that it shows a lag in attaining parental growth rates on nonfermentable carbon sources [2, 4, 5]. Cells of ${\Delta}cit2$, on the other hand, have similar growth phenotype as wild-type on various carbon sources. Thus, the biochemical basis of carbon metabolism in the yeast cells with deletion of CIT1 or CIT2 gene has not been clearly addressed yet. In the present study, we focused our efforts on understanding the function of Cit2 in utilizing $C_2$ carbon sources and then found that ${\Delta}cit1$ cells can grow on minimal medium containing $C_2$ carbon sources, such as acetate. We also analyzed that the characteristics of mutant strains defective in each of the genes encoding the enzymes involved in TCA and glyoxylate cycles and membrane carriers for metabolite transport. Our results suggest that citrate produced by peroxisomal CS can be utilized via glyoxylate cycle, and moreover that the glyoxylate cycle by itself functions as a fully competent metabolic pathway for acetate utilization in S. cerevisiae. We also studied the relationship between Cit1 and apoptosis in S. cerevisiae [6]. In multicellular organisms, apoptosis is a highly regulated process of cell death that allows a cell to self-degrade in order for the body to eliminate potentially threatening or undesired cells, and thus is a crucial event for common defense mechanisms and in development [7]. The process of cellular suicide is also present in unicellular organisms such as yeast Saccharomyces cerevisiae [8]. When unicellular organisms are exposed to harsh conditions, apoptosis may serve as a defense mechanism for the preservation of cell populations through the sacrifice of some members of a population to promote the survival of others [9]. Apoptosis in S. cerevisiae shows some typical features of mammalian apoptosis such as flipping of phosphatidylserine, membrane blebbing, chromatin condensation and margination, and DNA cleavage [10]. Yeast cells with ${\Delta}cit1$ deletion showed a temperature-sensitive growth phenotype, and displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e., ROS accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation, when exposed to heat stress. Upon long-term cultivation, ${\Delta}cit1$ cells showed increased potentials for both aging-induced apoptosis and adaptive regrowth. Activation of the metacaspase Yca1 was detected during heat- or aging-induced apoptosis in ${\Delta}cit1$ cells, and accordingly, deletion of YCA1 suppressed the apoptotic phenotype caused by ${\Delta}cit1$ mutation. Cells with ${\Delta}cit1$ deletion showed higher tendency toward glutathione (GSH) depletion and subsequent ROS accumulation than the wild-type, which was rescued by exogenous GSH, glutamate, or glutathione disulfide (GSSG). Beside Cit1, other enzymes of TCA cycle and glutamate dehydrogenases (GDHs) were found to be involved in stress-induced apoptosis. Deletion of the genes encoding the TCA cycle enzymes and one of the three GDHs, Gdh3, caused increased sensitivity to heat stress. These results lead us to conclude that GSH deficiency in ${\Delta}cit1$ cells is caused by an insufficient supply of glutamate necessary for biosynthesis of GSH rather than the depletion of reducing power required for reduction of GSSG to GSH.

  • PDF

The Optimal Activation State of Dendritic Cells for the Induction of Antitumor Immunity (항종양 면역반응 유도를 위한 수지상세포의 최적 활성화 조건)

  • Nam, Byung-Hyouk;Jo, Wool-Soon;Lee, Ki-Won;Oh, Su-Jung;Kang, Eun-Young;Choi, Yu-Jin;Do, Eun-Ju;Hong, Sook-Hee;Lim, Young-Jin;Kim, Ki-Uk;Jeong, Min-Ho
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.904-910
    • /
    • 2006
  • Dendritic cells (DCs) are the only antigen presenting cells (APCs) capable of initiating immune responses, which is crucial for priming the specific cytotoxic T lymphocyte (CTL) response and tumor immunity. Upon activation by DCs, CD4+ helper T cells can cross-prime CD8+ CTLs via IL-12. However, recently activated DCs were described to prime in vitro strong T helper cell type 1 $(Th_1)$ responses, whereas at later time points, they preferentially prime $Th_2$ cells. Therfore, we examined in this study the optimum kinetic state of DCs activation impacted on in vivo priming of tumor-specific CTLs by using ovalbumin (OVA) tumor antigen model. Bone-marrow-derived DCs showed an appropriate expression of surface MHC and costimulatory molecules after 6 or 7-day differentiation. The 6-day differentiated DCs pulsed with OVA antigen for 8 h (8-h DC) and followed by restimulation with LPS for 24 h maintained high interleukin (IL)-12 production potential, accompanying the decreased level in their secretion by delayed re-exposure time to LPS. Furthermore, immunization with 8-h DC induced higher intracellular $interferon(IFN)-{\gamma}+/CD8+T$ cells and elicited more powerful cytotoxicity of splenocytes to EG7 cells, a clone of EL4 cells transfected with an OVA cDNA, than immunization with 24-h DC. In the animal study for the evaluation of therapeutic or protective antitumor immunity, immunization with 8-h DC induced an effective antitumor immunity against tumor of EG7 cells and completely protected mice from tumor formation and prolonged survival, respectively. The most commonly used and clinically applied DC-based vaccine is based on in vitro antigen loading for 24 h. However, our data indicated that antigen stimulation over 8 h decreased antitumor immunity with functional exhaustion of DCs, and that the 8-h DC would be an optimum activation state impacted on in vivo priming of tumor-specific CTLs and subsequently lead to induction of strong antitumor immunity.

MicroRNA-23b is a Potential Tumor Suppressor in Diffuse Large B-cell Lymphoma (미만성 거대 B 세포 림프종(DLBCL)에서 microRNA-23b의 잠재적 종양 억제자로서의 효과)

  • Nam, Jehyun;Kim, Eunkyung;Kim, Jinyoung;Jeong, Dawoom;Kim, Donguk;Kwak, Bomi;Kim, Sang-Woo
    • Journal of Life Science
    • /
    • v.27 no.2
    • /
    • pp.149-154
    • /
    • 2017
  • Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-hodgkin lymphoma. Advances in the chemotherapeutic treatment of this disease have improved the outcomes of DLBCL; nonetheless, many patients still die of DLBCL, and therefore, a better understanding of this disease and identification of novel therapeutic targets are urgently required. In a recent gene expression profiling study, PDE (phosphodiesterase) 4B was found to be overexpressed in chemotherapy-resistant tumors. The major function of PDE4B is to inactivate the second messenger cyclic 3',5' monophosphate (cAMP) by catalyzing the hydrolysis of cAMP to 5'AMP. It is known that cAMP induces cell cycle arrest and/or apoptosis in B cells, and PDE4B abolishes cAMP's effect on B cells. However, the mechanism by which PDE4B is overexpressed remains unclear. Here, we show that the aberrant expression of miRNA may be associated with the overexpression of this gene. The PDE4B 3' untranslated region (UTR) has three functional binding sites of miR-23b, as confirmed by luciferase reporter assays. Interestingly, miR-23b-binding sites were evolutionarily conserved from humans to lizards, implying the critical role of PDE4B-miR-23b interaction in cellular physiology. The ectopic expression of miR-2 3b repressed PDE4B mRNA levels and enhanced intracellular cAMP concentrations. Additionally, miR-23b expression inhibited cell proliferation and survival of DLBCL cells only in the presence of forskolin, an activator of adenylyl cyclase, suggesting that miR-23b's effect is via the downregulation of PDE4B. These results together suggest that miR-23b could be a therapeutic target for overcoming drug resistance by repressing PDE4B in DLBCL.

Sphingosine-1-Phosphate-Induced Migration and Differentiation of Human Mesenchymal Stem Cells to Smooth Muscle Cells (Sphingosine-1-phosphate에 의한 중간엽 줄기세포의 이동과 평활근세포로의 분화)

  • Song, Hae-Young;Shin, Sang-Hun;Kim, Min-Young;Kim, Jae-Ho
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.183-193
    • /
    • 2011
  • Migration and differentiation of mesenchymal stem cells are crucial for tissue regeneration in response to injury. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates a variety of biological processes, including proliferation, survival, differentiation and motility. In the present study, we determined the role of S1P in migration and differentiation of human bone marrow-derived mesenchymal stem cells (BMSCs). S1P stimulated migration of BMSCs in a dose- and time-dependent manner, and pre-incubation of the cells with pertussis toxin completely abrogated S1P-induced migration, suggesting involvement of Gi-coupled receptors in S1P-induced cell migration. S1P elicited elevation of intracellular concentration of $Ca^{2+}$ ($[Ca^{2+}]_i$) and pretreatment with VPC23019, an antagonist of $S1P_1/S1P_3$, blocked S1P-induced migration and increase of $[Ca^{2+}]_i$. Small interfering RNA-mediated knockdown of endogenous $S1P_1$ attenuated S1P-induced migration of BMSCs. Furthermore, S1P treatment induced expression of $\alpha$-smooth muscle actin ($\alpha$-SMA), a smooth muscle marker, and pretreatment with VPC23019 abrogated S1P-induced $\alpha$-SMA expression. S1P induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), and pretreatment of cells with SB202190, an inhibitor of p38 MAPK, or adenoviral overexpression of a dominant-negative mutant of the p38 MAPK blocked S1P-induced cell migration and $\alpha$-SMA expression. Taken together, these results suggest that S1P stimulates migration and smooth muscle differentiation of BMSCs through an $S1P_1$-p38 MAPK-dependent mechanism.

Protective Effects of Sea Buckthorn (Hippophae rhamnoides L.) Leaves Fermented with Hericium erinaceum Mycelium against Oxidative Modification of Biological Macromolecules and Cell Death (노루궁뎅이 버섯균사체를 이용한 비타민나무 발효물이 생체고분자의 산화적 변형과 세포사멸에 미치는 보호 영향)

  • Kim, Seung-Sub;Kyeong, Inn-Goo;Lee, Mi-La;Kim, Dong-Goo;Shin, Ji-Young;Yang, Jin-Yi;Lee, Gwang-Ho;Eum, Won-Sik;Kang, Jung-Hoon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • In this study, hot water extract from sea buckthorn (Hippophae rhamnoides L.) leaves fermented with Hericium erinaceum mycelium (SBT-HE) was assessed for protection against oxidative modification of biological macromolecules and cell death. Antioxidant activity of SBT-HE was evaluated based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical, and peroxyl radical scavenging assays. SBT-HE showed 65.06% DPPH radical scavenging activity at $500{\mu}g/mL$, 98.83% ABTS radical scavenging activity at $50{\mu}g/mL$, and 44.03% peroxyl radical scavenging activity at $100{\mu}g/mL$. SBT-HE significantly inhibited DNA strand breakage induced by peroxyl radical. SBT-HE also prevented peroxyl radical-mediated human serum albumin modification. SBT-HE effectively inhibited $H_2O_2$-induced cell death and significantly increased cell survival by 21.59% at $100{\mu}g/mL$. SBT-HE also reduced intracellular reactive oxygen species levels in $H_2O_2$-treated cells. The results suggest that SBT-HE can contribute to antioxidant activity and protect cells from oxidative stress-induced cell injury.

Antibacterial and Intracellular Clearance Effect of Saururus chinensis Baill Water Extract against Salmonella typhimurium (삼백초 수용성 추출물의 Salmonella typhimurium 균에 대한 항균 및 숙주세포 내 사멸 효과 규명)

  • Kim, Dong-Hyeok;Lee, Jin-Ju;Lim, Jeong-Ju;Kim, Dae-Geun;Kim, Gon-sub;Lee, Hu-Jang;Min, Won-gi;Rhee, Man-Hee;Chang, Hong-Hee;Kim, Suk
    • Journal of agriculture & life science
    • /
    • v.44 no.6
    • /
    • pp.111-119
    • /
    • 2010
  • Salmonella spp. are one of major pathogens for zoonosis in worldwide, and can replicate within host cells and generally cause enterocolitis and foodborne poisoning which represents a considerable public health burden. The present study was designated to investigate the safty for host cells, antibacterial effects of Saururus chinensis Baill water extract (SCWE) on pure culture and infection with Salmonella enterica serovar Typhimurium (S. typhimurium) in murine derived macrophage RAW 264.7 cells. The different treatment of SCWE concentration (1, 10 or $100{\mu}g/ml$) did not show any cytotoxic effect to RAW 264.7 cells for 24 h incubation. In determination of antibacterial activity of SCWE against S. typhimurium, bacterial viability was markedly decreased compared to SCWE-untreated control. In RAW 264.7 cells, SCWE significantly induced morphological change (p<0.05). In infection assay of S. typhimurium in RAW 264.7 cells pretreated with $100{\mu}g/ml$ of SCWE, which are non-cytotoxic concentration, bacterial uptake ability of macrophage was increased corresponding with morphological change, whereas bacterial survival rates within macrophage was markedly reduced comparing to that of SCWE-untreated control. Furthermore, nitric oxide (NO) production in SCWE-treated cells was slightly decreased until 24 h post infection. Taken together, these findings demonstrated that SCWE have the antibacterial activity for S. typhimurium and the protective effects against S. typhimurium infection through activating murine macrophage independent on NO, suggesting that SCWE were beneficial on the disease caused by intracellularly replicating pathogens as a safe alternatives of conventional chemotherapies.