DOI QR코드

DOI QR Code

Sphingosine-1-Phosphate-Induced Migration and Differentiation of Human Mesenchymal Stem Cells to Smooth Muscle Cells

Sphingosine-1-phosphate에 의한 중간엽 줄기세포의 이동과 평활근세포로의 분화

  • Song, Hae-Young (Department of Physiology, School of Medicine, Medical Research Institute, Pusan National University) ;
  • Shin, Sang-Hun (Department of Physiology, School of Medicine, Medical Research Institute, Pusan National University) ;
  • Kim, Min-Young (Department of Physiology, School of Medicine, Medical Research Institute, Pusan National University) ;
  • Kim, Jae-Ho (Department of Physiology, School of Medicine, Medical Research Institute, Pusan National University)
  • 송해영 (부산대학교 의학전문대학원 생리학교실) ;
  • 신상훈 (부산대학교 의학전문대학원 생리학교실) ;
  • 김민영 (부산대학교 의학전문대학원 생리학교실) ;
  • 김재호 (부산대학교 의학전문대학원 생리학교실)
  • Received : 2010.11.08
  • Accepted : 2011.01.21
  • Published : 2011.02.28

Abstract

Migration and differentiation of mesenchymal stem cells are crucial for tissue regeneration in response to injury. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates a variety of biological processes, including proliferation, survival, differentiation and motility. In the present study, we determined the role of S1P in migration and differentiation of human bone marrow-derived mesenchymal stem cells (BMSCs). S1P stimulated migration of BMSCs in a dose- and time-dependent manner, and pre-incubation of the cells with pertussis toxin completely abrogated S1P-induced migration, suggesting involvement of Gi-coupled receptors in S1P-induced cell migration. S1P elicited elevation of intracellular concentration of $Ca^{2+}$ ($[Ca^{2+}]_i$) and pretreatment with VPC23019, an antagonist of $S1P_1/S1P_3$, blocked S1P-induced migration and increase of $[Ca^{2+}]_i$. Small interfering RNA-mediated knockdown of endogenous $S1P_1$ attenuated S1P-induced migration of BMSCs. Furthermore, S1P treatment induced expression of $\alpha$-smooth muscle actin ($\alpha$-SMA), a smooth muscle marker, and pretreatment with VPC23019 abrogated S1P-induced $\alpha$-SMA expression. S1P induced phosphorylation of p38 mitogen-activated protein kinase (MAPK), and pretreatment of cells with SB202190, an inhibitor of p38 MAPK, or adenoviral overexpression of a dominant-negative mutant of the p38 MAPK blocked S1P-induced cell migration and $\alpha$-SMA expression. Taken together, these results suggest that S1P stimulates migration and smooth muscle differentiation of BMSCs through an $S1P_1$-p38 MAPK-dependent mechanism.

중간엽 줄기세포의 이동과 분화는 손상된 조직의 재생을 위해 필수적이다. Sphingosine-1-phosphate (S1P)는 세포성장, 생존, 분화, 이동성 등 여러 가지 생명현상에 중요한 역할을 하는 생리활성 지질이다. 본 연구에서는 인체 골수유래 중간엽 줄기세포의 이동과 세포분화에 대한 S1P의 영향을 조사하였다. S1P는 중간엽 줄기세포의 이동을 증가시켰으며 pertussis toxin의 전처리는 S1P에 의한 세포이동을 억제하였다. 본 결과는 S1P에 의한 세포 이동과정에 Gi에 연결된 수용체가 관여함을 제시한다. $S1P_1$$S1P_3$ 수용체에 대한 길항제인 VPC23019의 전처리나 siRNA를 이용한 $S1P_1$ 수용체의 발현억제는 S1P에 의한 세포 내 칼슘 증가와 중간엽 줄기세포의 이동을 저해 하였다. 또한, S1P의 처리는 중간엽 줄기세포에서 평활근세포의 표지유전자인 $\alpha$-smooth muscle actin ($\alpha$-SMA)의 발현을 증가시켰으며 VPC23019의 전처리는 S1P에 의한 $\alpha$-SMA의 발현증가를 저해하였다. S1P는 중간엽 줄기세포에서 p38 mitogen-activated protein kinase (p38 MAPK)의 인산화를 촉진하였으며 p38 MAPK의 저해제인 SB202190의 전처리 또는 p38 MAPK의 dominant negative mutant의 과발현은 S1P에 의한 중간엽 줄기세포의 이동 $\alpha$-SMA 발현증가를 억제하였다. 본 연구결과는 S1P가 $S1P_1$-p38 MAPK 신호전달기전을 통해 중간엽 줄기세포의 이동과 평활근세포로의 분화를 촉진함으로써 중간엽 줄기세포를 이용한 조직재생에의 활용 가능성을 제시한다.

Keywords

References

  1. Annabi, B., S. Thibeault, Y. T. Lee, N. Bousquet-Gagnon, N. Eliopoulos, S. Barrette, J. Galipeau, and R. Beliveau. 2003. Matrix metalloproteinase regulation of sphingosine-1-phosphate-induced angiogenic properties of bone marrow stromal cells. Exp. Hematol. 31, 640-649. https://doi.org/10.1016/S0301-472X(03)00090-0
  2. Barry, F. P. and J. M. Murphy. 2004. Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell Biol. 36, 568-584. https://doi.org/10.1016/j.biocel.2003.11.001
  3. Chamberlain, G., J. Fox, B. Ashton, and J. Middleton. 2007. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25, 2739-2749. https://doi.org/10.1634/stemcells.2007-0197
  4. Chavakis, E., C. Urbich, and S. Dimmeler. 2008. Homing and engraftment of progenitor cells: A prerequisite for cell therapy. J. Mol. Cell Cardiol. 45, 514-522. https://doi.org/10.1016/j.yjmcc.2008.01.004
  5. Dwyer, R. M., S. M. Potter-Beirne, K. A. Harrington, A. J. Lowery, E. Hennessy, J. M. Murphy, F. P. Barry, T. O'Brien, and M. J. Kerin. 2007. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin. Cancer Res. 13, 5020-5027. https://doi.org/10.1158/1078-0432.CCR-07-0731
  6. Fiedler, J., G. Roderer, K. P. Gunther, and R. E. Brenner. 2002. BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J. Cell Biochem. 87, 305-312. https://doi.org/10.1002/jcb.10309
  7. Forte, G., M. Minieri, P. Cossa, D. Antenucci, M. Sala, V. Gnocchi, R. Fiaccavento, F. Carotenuto, P. De Vito, P. M. Baldini, M. Prat, and P. Di Nardo. 2006. Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells 24, 23-33. https://doi.org/10.1634/stemcells.2004-0176
  8. Fox, J. M., G. Chamberlain, B. A. Ashton, and J. Middleton. 2007. Recent advances into the understanding of mesenchymal stem cell trafficking. Br. J. Haematol. 137, 491-502. https://doi.org/10.1111/j.1365-2141.2007.06610.x
  9. Gabbiani, G. 2003. The myofibroblast in wound healing and fibrocontractive diseases. J. Pathol. 200, 500-503. https://doi.org/10.1002/path.1427
  10. Goetzl, E. J. and S. An. 1998. Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. FASEB J. 12, 1589-1598.
  11. Hla, T. 2004. Physiological and pathological actions of sphingosine 1-phosphate. Semin. Cell Dev. Biol. 15, 513-520. https://doi.org/10.1016/j.semcdb.2004.05.002
  12. Huang, C., K. Jacobson, and M. D. Schaller. 2004. MAP kinases and cell migration. J. Cell Sci. 117, 4619-4628. https://doi.org/10.1242/jcs.01481
  13. Huang, S., Y. Jiang, Z. Li, E. Nishida, P. Mathias, S. Lin, R. J. Ulevitch, G. R. Nemerow, and J. Han. 1997. Apoptosis signaling pathway in T cells is composed of ICE/Ced-3 family proteases and MAP kinase kinase 6b. Immunity 6, 739-749. https://doi.org/10.1016/S1074-7613(00)80449-5
  14. Ishii, I., N. Fukushima, X. Ye, and J. Chun. 2004. Lysophospholipid receptors: signaling and biology. Annu. Rev. Biochem. 73, 321-354. https://doi.org/10.1146/annurev.biochem.73.011303.073731
  15. Jaganathan, B. G., B. Ruester, L. Dressel, S. Stein, M. Grez, E. Seifried, and R. Henschler. 2007. Rho inhibition induces migration of mesenchymal stromal cells. Stem Cells 25, 1966-1974. https://doi.org/10.1634/stemcells.2007-0167
  16. Ji, J. F., B. P. He, S. T. Dheen, and S. S. Tay. 2004. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 22, 415-427. https://doi.org/10.1634/stemcells.22-3-415
  17. Kang, Y. J., E. S. Jeon, H. Y. Song, J. S. Woo, J. S. Jung, Y. K. Kim, and J. H. Kim. 2005. Role of c-Jun N-terminal kinase in the PDGF-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells. J. Cell Biochem. 95, 1135-1145. https://doi.org/10.1002/jcb.20499
  18. Kohno, T., H. Matsuyuki, Y. Inagaki, and Y. Igarashi. 2003. Sphingosine 1-phosphate promotes cell migration through the activation of Cdc42 in Edg-6/S1P4-expressing cells. Genes Cells 8, 685-697. https://doi.org/10.1046/j.1365-2443.2003.00667.x
  19. Law, R. E., W. P. Meehan, X. P. Xi, K. Graf, D. A. Wuthrich, W. Coats, D. Faxon, and W. A. Hsueh. 1996. Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia. J. Clin. Invest. 98, 1897-1905. https://doi.org/10.1172/JCI118991
  20. Lee, M. J., E. S. Jeon, J. S. Lee, M. Cho, D. S. Suh, C. L. Chang, and J. H. Kim. 2008. Lysophosphatidic acid in malignant ascites stimulates migration of human mesenchymal stem cells. J. Cell Biochem. 104, 499-510. https://doi.org/10.1002/jcb.21641
  21. Lee, R. H., S. C. Hsu, J. Munoz, J. S. Jung, N. R. Lee, R. Pochampally, and D. J. Prockop. 2006. A subset of human rapidly self-renewing marrow stromal cells preferentially engraft in mice. Blood 107, 2153-2161. https://doi.org/10.1182/blood-2005-07-2701
  22. Lee, R. H., B. Kim, I. Choi, H. Kim, H. S. Choi, K. Suh, Y. C. Bae, and J. S. Jung. 2004. Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cell Physiol. Biochem. 14, 311-324. https://doi.org/10.1159/000080341
  23. Lepley, D., J. H. Paik, T. Hla, and F. Ferrer. 2005. The G protein-coupled receptor S1P2 regulates Rho/Rho kinase pathway to inhibit tumor cell migration. Cancer Res. 65, 3788-3795. https://doi.org/10.1158/0008-5472.CAN-04-2311
  24. Li, C., Y. Kong, H. Wang, S. Wang, H. Yu, X. Liu, L. Yang, X. Jiang, L. Li, and L. Li. 2009. Homing of bone marrow mesenchymal stem cells mediated by sphingosine 1-phosphate contributes to liver fibrosis. J. Hepatol. 50, 1174-1183. https://doi.org/10.1016/j.jhep.2009.01.028
  25. Liu, Y., R. Wada, T. Yamashita, Y. Mi, C. X. Deng, J. P. Hobson, H. M. Rosenfeldt, V. E. Nava, S. S. Chae, M. J. Lee, C. H. Liu, T. Hla, S. Spiegel, and R. L. Proia. 2000. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J. Clin. Invest. 106, 951-961. https://doi.org/10.1172/JCI10905
  26. Lockman, K., J. S. Hinson, M. D. Medlin, D. Morris, J. M. Taylor, and C. P. Mack. 2004. Sphingosine 1-phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors. J. Biol. Chem. 279, 42422-42430. https://doi.org/10.1074/jbc.M405432200
  27. Meriane, M., S. Duhamel, L. Lejeune, J. Galipeau, and B. Annabi. 2006. Cooperation of matrix metalloproteinases with the RhoA/Rho kinase and mitogen-activated protein kinase kinase-1/extracellular signal-regulated kinase signaling pathways is required for the sphingosine-1-phosphate-induced mobilization of marrow-derived stromal cells. Stem Cells 24, 2557-2565. https://doi.org/10.1634/stemcells.2006-0209
  28. Nincheri, P., P. Luciani, R. Squecco, C. Donati, C. Bernacchioni, L. Borgognoni, G. Luciani, S. Benvenuti, F. Francini, and P. Bruni. 2009. Sphingosine 1-phosphate induces differentiation of adipose tissue-derived mesenchymal stem cells towards smooth muscle cells. Cell Mol. Life Sci. 66, 1741-1754. https://doi.org/10.1007/s00018-009-9181-8
  29. Owens, G. K., M. S. Kumar, and B. R. Wamhoff. 2004. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 84, 767-801. https://doi.org/10.1152/physrev.00041.2003
  30. Park, K. S., M. K. Kim, H. Y. Lee, S. D. Kim, S. Y. Lee, J. M. Kim, S. H. Ryu, and Y. S. Bae. 2007. S1P stimulates chemotactic migration and invasion in OVCAR3 ovarian cancer cells. Biochem. Biophys. Res. Commun. 356, 239-244. https://doi.org/10.1016/j.bbrc.2007.02.112
  31. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147. https://doi.org/10.1126/science.284.5411.143
  32. Ponte, A. L., E. Marais, N. Gallay, A. Langonne, B. Delorme, O. Herault, P. Charbord, and J. Domenech. 2007. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25, 1737-1745. https://doi.org/10.1634/stemcells.2007-0054
  33. Ponte, A. L., E. Marais, N. Gallay, A. Langonne, B. Delorme, O. Herault, P. Charbord, and J. Domenech. 2007. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25, 1737-1745. https://doi.org/10.1634/stemcells.2007-0054
  34. Prockop, D. J. 1997. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276, 71-74. https://doi.org/10.1126/science.276.5309.71
  35. Sanchez, T. and T. Hla. 2004. Structural and functional characteristics of S1P receptors. J. Cell Biochem. 92, 913-922. https://doi.org/10.1002/jcb.20127
  36. Short, B., N. Brouard, T. Occhiodoro-Scott, A. Ramakrishnan, and P. J. Simmons. 2003. Mesenchymal stem cells. Arch. Med. Res. 34, 565-571. https://doi.org/10.1016/j.arcmed.2003.09.007
  37. Spiegel, S. and S. Milstien. 2003. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol. 4, 397-407. https://doi.org/10.1038/nrm1103
  38. Sugimoto, N., N. Takuwa, H. Okamoto, S. Sakurada, and Y. Takuwa. 2003. Inhibitory and stimulatory regulation of Rac and cell motility by the G12/13-Rho and Gi pathways integrated downstream of a single G protein-coupled sphingosine-1-phosphate receptor isoform. Mol. Cell Biol. 23, 1534-1545. https://doi.org/10.1128/MCB.23.5.1534-1545.2003
  39. Taha, T. A., K. M. Argraves, and L. M. Obeid. 2004. Sphingosine-1-phosphate receptors: receptor specificity versus functional redundancy. Biochim. Biophys. Acta 1682, 48-55. https://doi.org/10.1016/j.bbalip.2004.01.006
  40. Tamama, K., V. H. Fan, L. G. Griffith, H. C. Blair, and A. Wells. 2006. Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells 24, 686-695. https://doi.org/10.1634/stemcells.2005-0176
  41. Tomasek, J. J., G. Gabbiani, B. Hinz, C. Chaponnier, and R. A. Brown. 2002. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349-363. https://doi.org/10.1038/nrm809
  42. Wang, L., Y. Li, X. Chen, J. Chen, S. C. Gautam, Y. Xu, and M. Chopp. 2002. MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology 7, 113-117. https://doi.org/10.1080/10245330290028588
  43. Wymann, M. P. and R. Schneiter. 2008. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 9, 162-176. https://doi.org/10.1038/nrm2335
  44. Yamaguchi, H., J. Kitayama, N. Takuwa, K. Arikawa, I. Inoki, K. Takehara, H. Nagawa, and Y. Takuwa. 2003. Sphingosine-1-phosphate receptor subtype-specific positive and negative regulation of Rac and haematogenous metastasis of melanoma cells. Biochem. J. 374, 715-722. https://doi.org/10.1042/BJ20030381
  45. Yatomi, Y., Y. Igarashi, L. Yang, N. Hisano, R. Qi, N. Asazuma, K. Satoh, Y. Ozaki, and S. Kume. 1997. Sphingosine 1-phosphate, a bioactive sphingolipid abundantly stored in platelets, is a normal constituent of human plasma and serum. J. Biochem. 121, 969-973. https://doi.org/10.1093/oxfordjournals.jbchem.a021681