• 제목/요약/키워드: intracellular survival

검색결과 191건 처리시간 0.034초

Prostaglandin E2 Reverses Curcumin-Induced Inhibition of Survival Signal Pathways in Human Colorectal Carcinoma (HCT-15) Cell Lines

  • Shehzad, Adeeb;Islam, Salman Ul;Lee, Jaetae;Lee, Young Sup
    • Molecules and Cells
    • /
    • 제37권12호
    • /
    • pp.899-906
    • /
    • 2014
  • Prostaglandin $E_2$ ($PGE_2$) promotes tumor-persistent inflammation, frequently resulting in cancer. Curcumin is a diphenolic turmeric that inhibits carcinogenesis and induces apoptosis. $PGE_2$ inhibits curcumin-induced apoptosis; however, the underlying inhibitory mechanisms in colon cancer cells remain unknown. The aim of the present study is to investigate the survival role of $PGE_2$ and whether addition of exogenous $PGE_2$ affects curcumininduced cell death. HCT-15 cells were treated with curcumin and $PGE_2$, and protein expression levels were investigated via Western blot. Reactive oxygen species (ROS) generation, lipid peroxidation, and intracellular glutathione (GSH) levels were confirmed using specific dyes. The nuclear factor-kappa B ($NF-{\kappa}B$) DNA-binding was measured by electrophoretic mobility shift assay (EMSA). $PGE_2$ inhibited curcumin-induced apoptosis by suppressing oxidative stress and degradation of PARP and lamin B. However, exposure of cells to the EP2 receptor antagonist, AH6809, and the PKA inhibitor, H89, before treatment with $PGE_2$ or curcumin abolished the protective effect of $PGE_2$ and enhanced curcumin-induced cell death. $PGE_2$ activates PKA, which is required for cAMP-mediated transcriptional activation of CREB. $PGE_2$ also activated the Ras/Raf/Erk pathway, and pretreatment with PD98059 abolished the protective effect of $PGE_2$. Furthermore, curcumin treatment greatly reduced phosphorylation of CREB, followed by a concomitant reduction of $NF-{\kappa}B$ (p50 and p65) subunit activation. $PGE_2$ markedly activated nuclear translocation of $NF-{\kappa}B$. EMSA confirmed the DNA-binding activities of $NF-{\kappa}B$ subunits. These results suggest that inhibition of curcumin-induced apoptosis by $PGE_2$ through activation of PKA, Ras, and $NF-{\kappa}B$ signaling pathways may provide a molecular basis for the reversal of curcumin-induced colon carcinoma cell death.

암 치료 표적으로써 prostate apoptosis response-4 (Par-4) (Prostate Apoptosis Response-4 (Par-4) as a Cancer Therapeutic Target)

  • 우선민;권택규
    • 생명과학회지
    • /
    • 제25권8호
    • /
    • pp.947-952
    • /
    • 2015
  • Par-4는 종양 억제 유전자로 암세포 선택적으로 세포사멸을 증진하는 기능을 가진다. Par-4 유전자는 nuclear localization sequences (NLS), leucine zipper (LZ), nuclear export sequence (NES), selective for apoptosis in cancer cells (SAC)의 네 가지 도메인을 가지고 있다. 이 중에서도 SAC 도메인이 Par-4에 의한 세포사멸에 중요한 역할을 하며, 이러한 Par-4의 활성화는 세포 내 경로와 세포 외 경로로 나누어진다. 세포질 내의 Par-4는 핵 내로 이동하여 NF-κB 매개의 세포 성장 경로를 억제하고 세포 밖으로 분비된 Par-4는 세포 표면에 존재하는 수용체인 GRP78과 결합하여 세포 사멸을 유도한다. 따라서 Par-4의 발현을 증가시키는 물질에 의한 세포 사멸뿐만 아니라 암세포에서 발현이 낮은 Par-4의 과발현을 통하여 세포사멸 민감화가 증진된다. 따라서 Par-4는 암 치료의 강력한 표적으로의 가능성을 가지고 있다.

Vanadate 처리가 종양세포의 방사선 감수성에 미치는 영향 (Enhanced Radiosensitivity of Tumor Cells Treated with Vanadate in Vitro)

  • 이명자;이원영
    • Radiation Oncology Journal
    • /
    • 제12권2호
    • /
    • pp.129-141
    • /
    • 1994
  • Intracellular ions which have a major role in cellular function have been reported to affect repair of radiation damage. Recently it has been reported that ouabain sensitizes A549 tumor cellls but not CCL-120 normal cells to radiation. Ouabain inhibits the $Na^+-K^+$-pump rapidly thus it increases intracellular Na concentration, Vanadate which is distributed extensively in almost all living organisms is known to be a $Na^+-K^+$-ATPase inhibitors, This study was performed to see any change in radiosensitivity of tumor cell by vanadate and any role of $Na^+-K^+$ATPase in radiosensitization. Experiments have been carried out by pretreatment with vanadate in human cell line(A549, JMG) and mouse cell line(L1210, spleen). For the cell survival MTT assay was performed for A549 and JMC cells and frypan blue dye exclusion test for L120, and spleen cells. Measurements of $Na^+-K^+$-ATPase activity in control, vanadate treated cell, radiation treated cell (9 Gy for A549 and JMG, 2 Gy for L1201, spleen), and combined $10^{-6}M$ vanadate and radiation treated cells were done. The results were summerized as fellows. 1. L1210 cell was most radiosensitive, and spleen cell and JMG cell were intermediate, and A549 cell was least radiosensitive. 2. Mininum or no cytotoxicity was seen with vanadate below concentration of $10^{-6}M$. 3. In A549 cells there was a little change in radiosensitivity with treatment of vanadate. However radiation sensitization was shown in low dose level of radiation i. e. 2- Gy. In JMG cells no change in radiosensitivity was noted. Both L1210 and spleen cell had radiosensitization but change was greater in tumor cell. 4. $Na^+-K^+$-ATPase activity was inhibited significantly in tumor cell by treatment of vanadate. 5. Radiaiton itself inhibited $Na^+-K^+$-ATPase activity of tumor cell with high $Na^+-K^+$-ATPase concention. Increase in radiosensitivity by vanadate was closely associated with orginal $Na^+-K^+$-ATPase contents. From the above results vanadate had little cytotoxicity and it sensitized tumor cells to radiation. Inhibitory effect of vanadate on $Na^+-K^+$-ATPase activity might be one of the contributing factors for radiosensitization to tumor cells which has greater enzyme activity than that of normal cell. It was suggested vanadate could be used as a potential radiosensitizer for tumor cells.

  • PDF

Transduced Tat-DJ-1 protein inhibits cytokines-induced pancreatic RINm5F cell death

  • Jo, Hyo Sang;Yeo, Hyeon Ji;Cha, Hyun Ju;Kim, Sang Jin;Cho, Su Bin;Park, Jung Hwan;Lee, Chi Hern;Yeo, Eun Ji;Choi, Yeon Joo;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • 제49권5호
    • /
    • pp.297-302
    • /
    • 2016
  • Loss of pancreatic β-cells by oxidative stress or cytokines is associated with diabetes mellitus (DM). DJ-1 is known to as a multifunctional protein, which plays an important role in cell survival. We prepared cell permeable wild type (WT) and mutant type (M26I) Tat-DJ-1 proteins to investigate the effects of DJ-1 against combined cytokines (IL-1β, IFN-γ and TNF-α)-induced RINm5F cell death. Both Tat-DJ-1 proteins were transduced into RINm5F cells. WT Tat-DJ-1 proteins significantly protected against cell death from cytokines by reducing intracellular toxicities. Also, WT Tat-DJ-1 proteins markedly regulated cytokines-induced pro- and anti-apoptosis proteins. However, M26I Tat-DJ-1 protein showed relatively low protective effects, as compared to WT Tat-DJ-1 protein. Our experiments demonstrated that WT Tat-DJ-1 protein protects against cytokine-induced RINm5F cell death by suppressing intracellular toxicities and regulating apoptosisrelated protein expression. Thus, WT Tat-DJ-1 protein could potentially serve as a therapeutic agent for DM and cytokine related diseases.

In Vitro Antibacterial Effect of the Combination of Galla rhois ethanol extracts and Sodium chlorate against Intramacrophage Brucella abortus

  • Cha, Chun-Nam;Hong, Il-Hwa;Yu, Eun-Ah;Park, Eun-Kee;Yoo, Chang-Yeol;Kim, Suk;Lee, Hu Jang
    • 한국식품위생안전성학회지
    • /
    • 제29권1호
    • /
    • pp.67-72
    • /
    • 2014
  • 본 연구는 오배자 에탄올 추출물 (GRE), 염소산나트륨 (SC) 그리고 오배자 에탄올 추출물과 염소산나트륨 합제 (GS)의 B. abortus에 대한 항균효과를 확인하기 위해 수행되었다. GRE, SC 그리고 GS를 B. abortus에 처리하여 배양한 후, B. abortus의 생존수를 확인하였으며, 마우스 탐식세포 내 감염된 B. abortus의 증식 억제효과를 경시별 (2, 24, 48시간)로 조사하였다. GRE, SC 그리고 GS는 각각 $400{\mu}g/mL$ 이하, 15 mM 그리고 0.6GS (GS 1, GRE $1,000{\mu}g/mL$ + SC 30 mM) 이하의 농도에서 세포독성을 나타나지 않았다. 모든 처리구에서 B. abortus의 생존율은 용량-의존적으로 현저하게 감소하는 결과를 나타내었다. 또한, GRE ($400{\mu}g/mL$), SC (15 mM) 그리고 0.5GS (GRE $500{\mu}g/mL$ + SC 15 mM)를 처리한 세포에서 배양 48시간 후에, B. abortus의 증식이 통계적으로 유의성 있게 감소하였으며 (GRE, p < 0.01; SC and 0.5GS, p < 0.001), 특히, GS를 처리한 경우, B. abortus의 세포내 증식이 GRE와 SC의 상승작용에 의한 강력한 항균효과를 나타내었다. 결론적으로, GS는 B. abortus에 대한 항균물질로서 유용할 뿐만 아니라, 식육과 우유 위생 분야에 적용할 수 있을 것으로 생각된다.

Substantial Protective Immunity Conferred by a Combination of Brucella abortus Recombinant Proteins against Brucella abortus 544 Infection in BALB/c Mice

  • Arayan, Lauren Togonon;Huy, Tran Xuan Ngoc;Reyes, Alisha Wehdnesday Bernardo;Hop, Huynh Tan;Son, Vu Hai;Min, WonGi;Lee, Hu Jang;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권2호
    • /
    • pp.330-338
    • /
    • 2019
  • Chronic infection with intracellular Brucella abortus (B. abortus) in livestock remains as a major problem worldwide. Thus, the search for an ideal vaccine is still ongoing. In this study, we evaluated the protective efficacy of a combination of B. abortus recombinant proteins; superoxide dismutase (rSodC), riboflavin synthase subunit beta (rRibH), nucleoside diphosphate kinase (rNdk), 50S ribosomal protein (rL7/L12) and malate dehydrogenase (rMDH), cloned and expressed into a pMal vector system and $DH5{\alpha}$, respectively, and further purified and applied intraperitoneally into BALB/c mice. After first immunization and two boosters, mice were infected intraperitoneally (IP) with $5{\times}10^4CFU$ of virulent B. abortus 544. Spleens were harvested and bacterial loads were evaluated at two weeks post-infection. Results revealed that this combination showed significant reduction in bacterial colonization in the spleen with a log protection unit of 1.31, which is comparable to the average protection conferred by the widely used live attenuated vaccine RB51. Cytokine analysis exhibited enhancement of cell-mediated immune response as IFN-${\gamma}$ is significantly elevated while IL-10, which is considered beneficial to the pathogen's survival, was reduced compared to control group. Furthermore, both titers of IgG1 and IgG2a were significantly elevated at three and four-week time points from first immunization. In summary, our in vivo data revealed that vaccination with a combination of five different proteins conferred a heightened host response to Brucella infection through cell-mediated immunity which is desirable in the control of intracellular pathogens. Thus, this combination might be considered for further improvement as a potential candidate vaccine against Brucella infection.

Thioredoxin reductase를 표적으로 하는 항암 최신 연구 동향 (Recent Research Trends in Thioredoxin Reductase-targeted Anticancer Therapy)

  • 황보현;이혜숙;정재훈;최영현
    • 생명과학회지
    • /
    • 제32권1호
    • /
    • pp.63-69
    • /
    • 2022
  • Thioredoxin reductase (TrxR) 시스템은 세포 내 산화 환원 반응의 항상성 유지와 신호 전달 경로를 조절하는데 중추적인 역할을 함으로써 세포의 생존과 기능 유지에 필수적이다. TrxR 시스템은 thioredoxin (Trx), TrxR 및 nicotinamide adenine dinucleotide phosphate의 구성요소를 포함하며, TrxR 효소의 촉매 반응에 의해 환원된 Trx는 하위 표적 단백질을 환원시켜 결과적으로 산화적 스트레스에 대한 방어와 세포 분화, 성장 및 사멸을 조절한다. 암세포는 무한한 세포 증식과 높은 대사율로 인해 과도하게 생성된 활성산소종을 소거하기 위해 세포 내 항산화능을 향상시켜 세포의 생존을 유지하는 반면, 항산화 시스템에 대한 의존도 및 민감도가 높아 이를 표적으로 한 항암 활성 연구에서 잠재적인 가능성이 있음을 제시한다. 여러 연구 결과에서 TrxR이 다양한 유형의 암에서 높은 수준으로 발현되고 있음이 밝혀졌고, 또한 TrxR 시스템을 표적으로 한 항암 활성에 대한 연구가 증가하고 있다. 따라서 본 총설에서는 세포 내 TrxR 시스템의 기능과 암의 발달 및 진행에서의 역할을 다루고, TrxR 억제제의 항암 활성 및 기전을 검토함으로써 항암 활성 연구에 대한 전략으로 TrxR 시스템의 타당성과 가치를 논하였다.

Apoptosis of Kinetin Riboside in Colorectal Cancer Cells Occurs by Promoting β-Catenin Degradation

  • TaeKyung Nam;Wonku Kang;Sangtaek Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권9호
    • /
    • pp.1206-1212
    • /
    • 2023
  • The Wnt/β-catenin pathway plays essential roles in regulating various cellular behaviors, including proliferation, survival, and differentiation [1-3]. The intracellular β-catenin level, which is regulated by a proteasomal degradation pathway, is critical to Wnt/β-catenin pathway control [4]. Normally, casein kinase 1 (CK1) and glycogen synthase kinase-3β (GSK-3β), which form a complex with the scaffolding protein Axin and the tumor suppressor protein adenomatous polyposis coli (APC), phosphorylate β-catenin at Ser45, Thr41, Ser37, and Ser33 [5, 6]. Phosphorylated β-catenin is ubiquitinated by the β-transducin repeat-containing protein (β-TrCP), an F-box E3 ubiquitin ligase complex, and ubiquitinated β-catenin is degraded via a proteasome pathway [7, 8]. Colorectal cancer is a significant cause of cancer-related deaths worldwide. Abnormal up-regulation of the Wnt/β-catenin pathway is a major pathological event in intestinal epithelial cells during human colorectal cancer oncogenesis [9]. Genetic mutations in the APC gene are observed in familial adenomatous polyposis coli (FAP) and sporadic colorectal cancers [10]. In addition, mutations in the N-terminal phosphorylation motif of the β-catenin gene were found in patients with colorectal cancer [11]. These mutations cause β-catenin to accumulate in the nucleus, where it forms complexes with transcription factors of the T-cell factor/lymphocyte enhancer factor (TCF/LEF) family to stimulate the expression of β-catenin responsive genes, such as c-Myc and cyclin D1, which leads to colorectal tumorigenesis [12-14]. Therefore, downregulating β-catenin response transcription (CRT) is a potential strategy for preventing and treating colorectal cancer. Plant cytokinins are N6-substituted purine derivatives; they promote cell division in plants and regulate developmental pathways. Natural cytokinins are classified as isoprenoid (isopentenyladenine, zeatin, and dihydrozeatin), aromatic (benzyladenine, topolin, and methoxytopolin), or furfural (kinetin and kinetin riboside), depending on their structure [15, 16]. Kinetin riboside was identified in coconut water and is a naturally produced cytokinin that induces apoptosis and exhibits antiproliferative activity in several human cancer cell lines [17]. However, little attention has been paid to kinetin riboside's mode of action. In this study, we show that kinetin riboside exerts its cytotoxic activity against colon cancer cells by suppressing the Wnt/β-catenin pathway and promoting intracellular β-catenin degradation.

장기간 플루세틴 처리에 의한 흰쥐 해마에서의 NCAM140 유전자 발현의 증가 (Chronic Treatment of Fluoxetine Increases Expression of NCAM140 in the Rat Hippocampus)

  • 최미란;채영규;정경화;백승연;김석현;노성원;최준호;이준석;최인근;양병환
    • 생물정신의학
    • /
    • 제16권1호
    • /
    • pp.5-14
    • /
    • 2009
  • Objectives : Most of the mechanisms reported for antidepressant drugs are the enhancement of neurite outgrowth and neuronal survival in the rat hippocampus. Neural cell adhesion molecule 140(NCAM140) has been implicated as having a role in cell-cell adhesion, neurite outgrowth, and synaptic plasticity. In this report, we have performed to elucidate a correlation among chronic antidepressant treatments, NCAM140 expression, and activation of phosphorylated cyclicAMP responsive element binding protein(pCREB) which is a downstream molecule of NCAM140-mediated intracellular signaling pathway in the rat hippocampus. Methods : Fluoxetine(10mg/kg) was injected acutely(daily injection for 5days) or chronically(daily injection for 14days) in adult rats. RNA and protein were extracted from the rat hippocampus, respectively. Real-time RT-PCR was performed to analyze the expression pattern of NCAM140 gene and western blot analyses for the activation of the phosphorylation ratio of CREB. Results : Chronic fluoxetine treatments increased NCAM140 expression 1.3 times higher than control in rat hippocampus. pCREB immunoreactivity in the rat hippocampus with chronic fluoxetine treatment was increased 4.0 times higher than that of control. Conclusion : Chronic fluoxetine treatment increased NCAM140 expression and pCREB activity in the rat hippocampus. Our data suggest that NCAM140 and pCREB may play a role in the clinical efficacy of antidepressants promoting the neurite outgrowth and neuronal survival.

  • PDF

PEP-1-GSTpi protein enhanced hippocampal neuronal cell survival after oxidative damage

  • Sohn, Eun Jeong;Shin, Min Jea;Kim, Dae Won;Son, Ora;Jo, Hyo Sang;Cho, Su Bin;Park, Jung Hwan;Lee, Chi Hern;Yeo, Eun Ji;Choi, Yeon Joo;Yu, Yeon Hee;Kim, Duk-Soo;Cho, Sung-Woo;Kwon, Oh Shin;Cho, Yong-Jun;Park, Jinseu;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • 제49권7호
    • /
    • pp.382-387
    • /
    • 2016
  • Reactive oxygen species generated under oxidative stress are involved in neuronal diseases, including ischemia. Glutathione S-transferase pi (GSTpi) is a member of the GST family and is known to play important roles in cell survival. We investigated the effect of GSTpi against oxidative stress-induced hippocampal HT-22 cell death, and its effects in an animal model of ischemic injury, using a cell-permeable PEP-1-GSTpi protein. PEP-1-GSTpi was transduced into HT-22 cells and significantly protected against H2O2-treated cell death by reducing the intracellular toxicity and regulating the signal pathways, including MAPK, Akt, Bax, and Bcl-2. PEP-1-GSTpi transduced into the hippocampus in animal brains, and markedly protected against neuronal cell death in an ischemic injury animal model. These results indicate that PEP-1-GSTpi acts as a regulator or an antioxidant to protect against oxidative stress-induced cell death. Our study suggests that PEP-1-GSTpi may have potential as a therapeutic agent for the treatment of ischemia and a variety of oxidative stress-related neuronal diseases.