Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.1.63

Recent Research Trends in Thioredoxin Reductase-targeted Anticancer Therapy  

Hwangbo, Hyun (Korea Nanobiotechnology Center, Pusan National University)
Lee, Hyesook (Anti-Aging Research Center, Dong-eui University)
Cheong, JaeHun (Korea Nanobiotechnology Center, Pusan National University)
Choi, Yung Hyun (Anti-Aging Research Center, Dong-eui University)
Publication Information
Journal of Life Science / v.32, no.1, 2022 , pp. 63-69 More about this Journal
Abstract
The thioredoxin reductase (TrxR) system is essential for cell survival and function by playing a pivotal role in maintaining homeostasis of cellular redox and regulating signal transduction pathways. The TrxR system comprises thioredoxin (Trx), TrxR, and nicotinamide adenine dinucleotide phosphate. Trx reduced by the catalytic reaction of the TrxR enzyme reduces downstream proteins, resulting in protection against oxidative stress and regulation of cell differentiation, growth, and death. Cancer cells survive by improving their intracellular antioxidant capacity to eliminate excessively generated reactive oxygen species (ROS) due to infinite cell proliferation and a high metabolic rate. Therefore, cancer cells have high dependence and sensitivity to antioxidant systems, suggesting that focusing on TrxR, a representative antioxidant system, is a potential strategy for cancer therapy. Several studies have revealed that TrxR is expressed at high levels in various types of cancers, and research on anticancer activity targeting the TrxR system is increasing. In this review, we discuss the feasibility and value of the TrxR system as a strategy for anticancer activity research by examining the relationship between the function of the intracellular TrxR system and the development and progression of cancer, considering the anticancer activity and mechanism of TrxR inhibitors.
Keywords
Cancer therapy; reactive oxygen species; thioredoxin; thioredoxin reductase;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Jakupoglu, C., Przemeck, G. K., Schneider, M., Moreno, S. G., Mayr, N., Hatzopoulos, A. K., de Angelis, M. H., Wurst, W., Bornkamm, G. W., Brielmeier, M. and Conrad, M. 2005. Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol. Cell Biol. 25, 1980-1988.   DOI
2 Loschen, G., Azzi, A., Richter, C. and Flohe, L. 1974. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 42, 68-72.   DOI
3 Lu, J., Papp, L. V., Fang, J., Rodriguez-Nieto, S., Zhivotovsky, B. and Holmgren, A. 2006. Inhibition of mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin anticancer activity. Cancer Res. 66, 4410-4418.   DOI
4 Meyer, Y., Buchanan, B. B., Vignols, F. and Reichheld, J. P. 2009. Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu. Rev. Genet. 43, 335-367.   DOI
5 Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., DellaMorte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D. and Abete, P. 2018. Oxidative stress, aging, and diseases. Clin. Interv. Aging 13, 757-772.   DOI
6 Powis, G., Mustacich, D. and Coon, A. 2000. The role of the redox protein thioredoxin in cell growth and cancer. Free Radic. Biol. Med. 29, 312-322.   DOI
7 Mikkelsen, R. B. and Wardman, P. 2003. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 22, 5734-5754.   DOI
8 Nordberg, J. and Arner, E. S. 2001. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 31, 1287-1312.   DOI
9 Mahmood, D. F., Abderrazak, A., El Hadri, K., Simmet, T. and Rouis, M. 2013. The thioredoxin system as a therapeutic target in human health and disease. Antioxid. Redox Signal. 19, 1266-1303.   DOI
10 Holmgren, A. and Lu, J. 2010. Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem. Biophys. Res. Commun. 396, 120-124.   DOI
11 Hwangbo, H., Kim, M. Y., Ji, S. Y., Kim, S. Y., Lee, H., Kim, G. Y., Park, C., Keum, Y. S., Hong, S. H., Cheong, J. and Choi, Y. H. 2020. Auranofin attenuates non-alcoholic fatty liver disease by suppressing lipid accumulation and NLRP3 inflammasome-mediated hepatic inflammation in vivo and in vitro. Antioxidants (Basel) 9, 1040.   DOI
12 Saccoccia, F., Angelucci, F., Boumis, G., Brunori, M., Miele, A. E., Williams, D. L. and Bellelli, A. 2012. On the mechanism and rate of gold incorporation into thiol-dependent flavoreductases. J. Inorg. Biochem. 108, 105-111.   DOI
13 Schafer, F. Q. and Buettner, G. R. 2001. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30, 1191-1212.   DOI
14 Schumacker, P. T. 2006. Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10, 175-176.   DOI
15 Soderberg, A., Sahaf, B. and Rosen, A. 2000. Thioredoxin reductase, a redox-active selenoprotein, is secreted by normal and neoplastic cells: presence in human plasma. Cancer Res. 60, 2281-2289.
16 Sonzogni-Desautels, K. and Ndao, M. 2021. Will auranofin become a golden new treatment against COVID-19? Front. Immunol. 12, 683694.   DOI
17 Arner, E. S. and Holmgren, A. 2006. The thioredoxin system in cancer. Semin. Cancer Biol. 16, 420-426.
18 Bindoli, A. and Rigobello, M. P. 2013. Principles in redox signaling: from chemistry to functional significance. Antioxid. Redox Signal. 18, 1557-1593.   DOI
19 Boonstra, J. and Post, J. A. 2004. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 337, 1-13.   DOI
20 Zhong, L., Arner, E. S. and Holmgren, A. 2000. Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc. Natl. Acad. Sci. USA. 97, 5854-58549.   DOI
21 Matsui, M., Oshima, M., Oshima, H., Takaku, K., Maruyama, T., Yodoi, J. and Taketo, M. M. 1996. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev. Biol. 178, 179-185.   DOI
22 Kim, S. J., Miyoshi, Y., Taguchi, T., Tamaki, Y., Nakamura, H., Yodoi, J., Kato, K. and Noguchi, S. 2005. High thioredoxin expression is associated with resistance to docetaxel in primary breast cancer. Clin. Cancer Res. 11, 8425-8430.   DOI
23 Rackham, O., Nichols, S. J., Leedman, P. J., Berners-Price, S. J. and Filipovska, A. 2007. A gold (I) phosphine complex selectively induces apoptosis in breast cancer cells: implications for anticancer therapeutics targeted to mitochondria. Biochem. Pharmacol. 74, 992-1002.   DOI
24 Baker, M. 2017. Deceptive curcumin offers cautionary tale for chemists. Nature 541, 144-145.   DOI
25 Das, K. C. and Das, C. K. 2000. Thioredoxin, a singlet oxygen quencher and hydroxyl radical scavenger: redox independent functions. Biochem. Biophys. Res. Commun. 277, 443-447.   DOI
26 Eriksson, S. E., Prast-Nielsen, S., Flaberg, E., Szekely, L. and Arner, E. S. 2009. High levels of thioredoxin reductase 1 modulate drug-specific cytotoxic efficacy. Free Radic. Biol. Med. 47, 1661-1671.   DOI
27 Fang, J., Lu, J. and Holmgren, A. 2005. Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J. Biol. Chem. 280, 25284-25290.   DOI
28 Gladyshev, V. N., Jeang, K. T. and Stadtman, T. C. 1996. Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc. Natl. Acad. Sci. USA. 93, 6146-6151.   DOI
29 Jayakumar, S., Patwardhan, R. S., Pal, D., Singh, B., Sharma, D., Kutala, V. K. and Sandur, S. K. 2017. Mitochondrial targeted curcumin exhibits anticancer effects through disruption of mitochondrial redox and modulation of TrxR2 activity. Free Radic. Biol. Med. 113, 530-538.   DOI
30 Karlenius, T. C. and Tonissen, K. F. 2010. Thioredoxin and cancer: A role for thioredoxin in all states of tumor oxygenation. Cancers (Basel) 2, 209-232.   DOI
31 Lee, S., Kim, S. M. and Lee, R. T. 2012. Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance. Antioxid. Redox Signal. 18, 1165-1207.
32 Lillig, C. H. and Holmgren, A. 2007. Thioredoxin and related molecules-from biology to health and disease. Antioxid. Redox Signal. 9, 25-47.   DOI
33 Lincoln, D. T., Ali Emadi, E. M., Tonissen, K. F. and Clarke, F. M. 2003. The thioredoxin-thioredoxin reductase system: over-expression in human cancer. Anticancer Res. 23, 2425-2433.
34 Madeira, J. M., Gibson, D. L., Kean, W. F. and Klegeris, A. 2012. The biological activity of auranofin: implications for novel treatment of diseases. Inflammopharmacology 20, 297-306.   DOI
35 Marzano, C., Gandin, V., Folda, A., Scutari, G., Bindoli, A. and Rigobello, M. P. 2006. Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells. Free Radic. Biol. Med. 42, 872-881.   DOI
36 Miranda-Vizuete, A., Damdimopoulos, A. E., Pedrajas, J. R., Gustafsson, J. A. and Spyrou, G. 1999. Human mitochondrial thioredoxin reductase cDNA cloning, expression and genomic organization. Eur. J. Biochem. 261, 405-412.   DOI
37 Pessetto, Z. Y., Weir, S. J., Sethi, G., Broward, M. A. and Godwin, A. K. 2013. Drug repurposing for gastrointestinal stromal tumor. Mol. Cancer Ther. 12, 1299-1309.   DOI
38 Bu, L., Li, W., Ming, Z., Shi, J., Fang, P. and Yang, S. 2017. Inhibition of TrxR2 suppressed NSCLC cell proliferation, metabolism and induced cell apoptosis through decreasing antioxidant activity. Life Sci. 178, 35-41.   DOI
39 Cai, W., Zhang, B., Duan, D., Wu, J. and Fang, J. 2012. Curcumin targeting the thioredoxin system elevates oxidative stress in HeLa cells. Toxicol. Appl. Pharmacol. 262, 341-348.   DOI
40 Cairns, R. A., Harris, I. S. and Mak, T. W. 2011. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85-95.   DOI
41 Poerschke, R. L. and Moos, P. J. 2011. Thioredoxin reductase 1 knockdown enhances selenazolidine cytotoxicity in human lung cancer cells via mitochondrial dysfunction. Biochem. Pharmacol. 81, 211-221.   DOI
42 Prast-Nielsen, S., Cebula, M., Pader, I. and Arner, E. S. Noble metal targeting of thioredoxin reductase--covalent complexes with thioredoxin and thioredoxin-related protein of 14 kDa triggered by cisplatin. Free Radic. Biol. Med. 49, 1765-1778.   DOI
43 Rackham, O., Shearwood, A. M., Thyer, R., McNamara, E., Davies, S. M., Callus, B. A., Miranda-Vizuete, A., BernersPrice, S. J., Cheng, Q., Arner, E. S. and Filipovska, A. 2011. Substrate and inhibitor specificities differ between human cytosolic and mitochondrial thioredoxin reductases: Implications for development of specific inhibitors. Free Radic. Biol. Med. 50, 689-699.   DOI
44 Reddy, C. A., Somepalli, V., Golakoti, T., Kanugula, A. K., Karnewar, S., Rajendiran, K., Vasagiri, N., Prabhakar, S., Kuppusamy, P., Kotamraju, S. and Kutala, V. K. 2014. Mitochondrial-targeted curcuminoids: a strategy to enhance bioavailability and anticancer efficacy of curcumin. PLoS One 9, e89351.   DOI
45 Roder, C. and Thomson, M. J. 2015. Auranofin: repurposing an old drug for a golden new age. Drugs R. D. 15, 13-20.   DOI
46 Sabharwal, S. S. and Schumacker, P. T. 2014. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? Nat. Rev. Cancer 14, 709-721.   DOI
47 Sasada, T., Nakamura, H., Ueda, S., Sato, N., Kitaoka, Y., Gon, Y., Takabayashi A., Spyrou, G., Holmgren, A. and Yodoi, J. 1999. Possible involvement of thioredoxin reductase as well as thioredoxin in cellular sensitivity to cis-diamminedichloroplatinum (II). Free Radic. Biol. Med. 27, 504-514.   DOI
48 Shah, M. A. and Rogoff, H. A. 2021. Implications of reactive oxygen species on cancer formation and its treatment. Semin. Oncol. 48, 238-245.
49 Bhatia, M., McGrath, K. L., Di Trapani, G., Charoentong, P., Shah, F., King, M. M., Clarke, F. M. and Tonissen, K. F. 2016. The thioredoxin system in breast cancer cell invasion and migration. Redox Biol. 8, 68-78.   DOI
50 Sun, X., Wang, W., Chen, J., Cai, X., Yang, J., Yang, Y., Yan, H., Cheng, X., Ye, J., Lu, W., Hu, C., Sun, H., Pu, J. and Cao, P. 2016. The natural diterpenoid isoforretin a inhibits thioredoxin-1 and triggers potent ROS-mediated antitumor effects. Cancer Res. 77, 926-936.
51 Tamura, T. and Stadtman, T. C. 1996. A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Proc. Natl. Acad. Sci. USA. 93, 1006-1011.   DOI
52 Gromer, S., Urig, S. and Becker, K. 2004. The thioredoxin system-from science to clinic. Med. Res. Rev. 24, 40-89.   DOI
53 Szatrowski, T. P. and Nathan, C. F. 1991. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794-798.
54 Welsh, S. J., Bellamy, W. T., Briehl, M. M. and Powis, G. 2002. The redox protein thioredoxin-1 (Trx-1) increases hypoxia-inducible factor 1alpha protein expression: Trx-1 overexpression results in increased vascular endothelial growth factor production and enhanced tumor angiogenesis. Cancer Res. 62, 5089-5095.
55 Thannickal, V. J. and Fanburg, B. L. 2000. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 279, L1005-1028.   DOI
56 Trachootham, D., Alexandre, J. and Huang, P. 2009. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579-591.   DOI
57 Yamada, M., Tomida, A., Yoshikawa, H., Taketani, Y. and Tsuruo, T. 1996. Increased expression of thioredoxin/adult T-cell leukemia-derived factor in cisplatin-resistant human cancer cell lines. Clin. Cancer Res. 2, 427-432.
58 Zhang, J., Li, X., Han, X., Liu, R. and Fang, J. 2017. Targeting the thioredoxin system for cancer therapy. Trends Pharmacol. Sci. 38, 794-808.   DOI
59 Zhu, B., Ren, C., Du, K., Zhu, H., Ai, Y., Kang, F., Luo, Y., Liu, W., Wang, L., Xu, Y., Jiang, X. and Zhang, Y. 2019. Olean-28,13b-olide 2 plays a role in cisplatin-mediated apoptosis and reverses cisplatin resistance in human lung cancer through multiple signaling pathways. Biochem. Pharmacol. 170, 113642.   DOI
60 Cheng, Q., Sandalova, T., Lindqvist, Y. and Arner, E. S. 2009. Crystal structure and catalysis of the selenoprotein thioredoxin reductase 1. J. Biol. Chem. 284, 3998-4008.   DOI
61 El Feky, S. E., Ghany Megahed, M. A., Abd El Moneim, N. A., Zaher, E. R., Khamis, S. A. and Ali, L. 2021. Cytotoxic, chemosensitizing and radiosensitizing effects of curcumin based on thioredoxin system inhibition in breast cancer cells: 2D vs. 3D cell culture system. Exp. Ther. Med. 21, 506.   DOI
62 Engman, L., Al-Maharik, N., McNaughton, M., Birmingham, A. and Powis, G. 2003. Thioredoxin reductase and cancer cell growth inhibition by organotellurium antioxidants. Anticancer Drugs 14, 153-161.   DOI
63 Fritz-Wolf, K., Jortzik, E., Stumpf, M., Preuss, J., Iozef, R., Rahlfs, S. and Becker, K. 2013. Crystal structure of the Plasmodium falciparum thioredoxin reductase-thioredoxin complex. J. Mol. Biol. 425, 3446-3460.   DOI
64 Habermann, K. J., Grunewald, L., van Wijk, S. and Fulda, S. 2017. Targeting redox homeostasis in rhabdomyosarcoma cells: GSH-depleting agents enhance auranofin-induced cell death. Cell Death Dis. 8, e3067.   DOI
65 Hanschmann, E. M., Godoy, J. R., Berndt, C., Hudemann, C. and Lillig, C. H. 2013. Thioredoxins, glutaredoxins, and peroxiredoxins-molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid. Redox Signal. 19, 1539-1605.   DOI
66 Holmgren, A. 1985. Thioredoxin. Annu. Rev. Biochem. 54, 237-271.   DOI
67 Hwangbo, H., Ji, S. Y., Kim, M. Y., Kim, S. Y., Lee, H., Kim, G. Y., Kim, S., Cheong, J. and Choi, Y. H. 2021. Anti-inflammatory effect of auranofin on palmitic acid and LPS-induced inflammatory response by modulating TLR4 and NOX4-mediated NF-κB signaling pathway in RAW264.7 macrophages. Int. J. Mol. Sci. 22, 5920.   DOI
68 Hwangbo, H., Kim, S. Y., Lee, H., Park, S. H., Hong, S. H., Park, C., Kim, G. Y., Leem, S. H., Hyun, J. W., Cheong, J. and Choi, Y. H. 2020. Auranofin enhances sulforaphane-mediated apoptosis in hepatocellular carcinoma Hep3B cells through inactivation of the PI3K/Akt signaling pathway. Biomol. Ther. (Seoul) 28, 443-455.   DOI
69 Hwang-Bo, H., Jeong, J. W., Han, M. H., Park, C., Hong, S. H., Kim, G. Y., Moon, S. K., Cheong, J., Kim, W. J., Yoo, Y. H. and Choi, Y. H. 2017. Auranofin, an inhibitor of thioredoxin reductase, induces apoptosis in hepatocellular carcinoma Hep3B cells by generation of reactive oxygen species. Gen. Physiol. Biophys. 36, 117-128.   DOI