• Title/Summary/Keyword: intracellular oxidative stress

Search Result 390, Processing Time 0.053 seconds

작약에 의해 유도되는 HSP72 및 HO-1 유전자의 간독성 보호 효능 (Paeonia lactiflora Pall Pprevents $H_2O_2$-induced Hepatotoxicity by Increasing HSP72 and HO-1)

  • 오수영;이지선;서상희;김태수;마진열
    • 동의생리병리학회지
    • /
    • 제25권5호
    • /
    • pp.843-848
    • /
    • 2011
  • In Korea, China, and Japan, Paeonia lactiflora Pall (PL) has been used in the treatment of rheumatoid arthritis, hepatitis, and fever for more than 1200 years. It has been reported that PL has protective effects against $H_2O_2$-induced oxidative stress and LPS-induced liver inflammation. However cellular and molecular mechanism of PL protection against oxidative stress has not fully been elucidated. Here, we describe that the water-soluble extract of PL decreased $H_2O_2$-induced hepatotoxicity. This hepatoprotective effect of PL is reason to decrease the level of intracellular reactive oxygen species (ROS) and increase expression of heme oxygenase 1 (HO-1) and heat shock protein 72 (HSP72) which proteins are involved in protecting the cells from stress like as oxidative stress. We also elucidated that hepatoprotective effect of PL was abolished by knock down of HO-1 and HSP72 by siRNA. These results suggest that the increasing of HO-1 and HSP72 protein by PL treatment might be participated in hepatoprotective effect against oxidative stress such as $H_2O_2$.

팥콩나물 분획물의 수명연장 효과 (Lifespan Extending Effects of Fractions of Red Bean Sprouts)

  • 이은별;김준형;박재준;신문기;이재승;형명명;차연수;김민아;송석보;김대근
    • 생약학회지
    • /
    • 제46권3호
    • /
    • pp.214-222
    • /
    • 2015
  • Recently, many studies have focused on the aging and oxidative stress. Several papers reported that Vigna angularis has various biological properties including antiaging, antioxidative and anti-inflammatory activities. Methanol extract from the red bean sprouts was successively partitioned as n-hexane, methylene chloride, ethyl acetate, n-butanol and H2O soluble fractions. We had studied lifespan extending and stress resistant effects of the fractions using Caenorhabditis elegans. Superoxide dismutase (SOD), catalase activities, and intracellular reactive oxygen species (ROS) levels were also investigated. Moreover, we had studied to find any significant change in aging-related factors such as reproduction, food intake, growth and movement of C. elegans. Our results represent that ethyl acetate fraction showed the most potent lifespan extending and stress resistant effects, and this fraction was able to elevate SOD and catalase activities of worms, and reduce intracellular ROS accumulation.

팥에서 분리한 Genistin이 선충의 수명연장에 미치는 영향 (Effects of genistin from Vigna angularis on Lifespan-extending in Caenorhabditis elegans)

  • 이은별;안달래;김반지;이소연;차연수;김민아;송석보;김대근
    • 생약학회지
    • /
    • 제46권1호
    • /
    • pp.17-22
    • /
    • 2015
  • Previous phytochemical studies of Vigna angularis (Ohwi) Ohwi & Ohashi (Leguminosae) have shown the presence of saponins and flavonoids. From the seed of V. angularis, genistein-7-O-${\beta}$-D-glucopyranoside (genistin) was isolated. Lifespan-extending effect of genistin was elucidated using Caenorhabditis elegans model system. Genistin showed potent lifespan extension of worms under normal culture condition. This compound also exhibited the protective effects against thermal and oxidative stress conditions. In the case of heat stress, genistin-treated worms exhibited enhanced survival rate, compared to control worms. In addition, genistin-fed worms lived longer than control worms under oxidative stress induced by paraquat. To verify the possible mechanism of genistin-mediated increased lifespan and stress resistance of worms, we investigated whether genistin might alter superoxide dismutase (SOD), catalase activities and intracellular ROS levels. Our results showed that genistin was able to elevate SOD and catalase activities of worms and reduce intracellular ROS accumulation in a dose-dependent manner.

Protective Role of Corticosterone against Hydrogen Peroxide-Induced Neuronal Cell Death in SH-SY5Y Cells

  • Lee, Chan;Jang, Jung-Hee;Park, Gyu Hwan
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.570-575
    • /
    • 2022
  • Stress breaks body balance, which can cause diverse physiological disorders and worsen preexisting diseases. However, recent studies have reported that controllable stress and overcoming from stress reinforce resilience to resist against more intense stress afterwards. In this study, we investigated the protective effect of corticosterone (CORT), a representative stress hormone against hydrogen peroxide (H2O2)-induced neuronal cell death and its underlying molecular mechanism in SH-SY5Y cells, a human neuroblastoma cell line. The decreased cell viability by H2O2 was effectively restored by the pretreatment with low concentration of CORT (0.03 μM for 72 h) in the cells. H2O2-increased expression of apoptotic markers such as PUMA and Bim was decreased by CORT pretreatment. Furthermore, pretreatment of CORT attenuated H2O2-mediated oxidative damages by upregulation of antioxidant enzymes via activation of nuclear factor erythroid 2-related factor 2 (Nrf2). These findings suggest that low concentration of CORT with eustressed condition enhances intracellular self-defense against H2O2-mediated oxidative cell death, suggesting a role of low concentration of CORT as one of key molecules for resilience and neuronal cell survival.

Antioxidant Effect of Edaravone on the Development of Preimplantation Porcine Embryos against Hydrogen Peroxide-Induced Oxidative Stress

  • Do, Geon-Yeop;Kim, Jin-Woo;Chae, Sung-Kyu;Ahn, Jae-Hyun;Park, Hyo-Jin;Park, Jae-Young;Yang, Seul-Gi;Koo, Deog-Bon
    • 한국수정란이식학회지
    • /
    • 제30권4호
    • /
    • pp.289-298
    • /
    • 2015
  • Edaravone (Eda) is a potent scavenger of inhibiting free radicals including hydroxyl radicals ($H_2O_2$). Reactive oxygen species (ROS) such as $H_2O_2$ can alter most kinds of cellular molecules such as lipids, proteins and nucleic acids, cellular apoptosis. In addition, oxidative stress from over-production of ROS is involved in the defective embryo development of porcine. Previous study reported that Eda has protective effects against oxidative stress-like cellular damage. However, the effect of Eda on the preimplantation porcine embryos development under oxidative stress is unclear. Therefore, in this study, the effects of Eda on blastocyst development, expression levels of ROS, and apoptotic index were first investigated in preimplantation porcine embryos. After in vitro fertilization, porcine embryos were cultured for 6 days in PZM medium with Eda ($10{\mu}M$), $H_2O_2$ ($200{\mu}M$), and Eda+$H_2O_2$ treated group, respectively. Rate of blastocyst development was significantly increased (P<0.05) in the Eda treated group compared with only $H_2O_2$ treated group. And, we measured intracellular levels of ROS by DCF-DA staining methods and investigated numbers of apoptotic nuclei by TUNEL assay analysis is in porcine blastocyst, respectively. Both intracellular ROS levels and the numbers of apoptotic nucleic were significantly decreased (P<0.05) in porcine blastocysts cultured with Eda ($10{\mu}M$). More over, the total cell number of blastocysts were significantly increased (P<0.05) in the Eda-treated group compared with untreated group and the only $H_2O_2$ treated group. Based on the results, Eda was related to regulate as antioxidant-like function according to the reducing ROS levels during preimplantation periods. Also, Eda is beneficial for developmental competence and preimplantation quality of porcine embryos. Therefore, we concluded that Eda has protective effect to ROS derived apoptotic stress in preimplantation porcine embryos.

Inhibition of Oxidative Damage by Phlorotannins from Ecklonia cava in Normal Human Dermal Fibroblasts

  • Kim, Moon-Moo;Rajapakseb, Niranjan;Kim, Se-Kwon
    • 한국해양바이오학회지
    • /
    • 제1권2호
    • /
    • pp.126-135
    • /
    • 2006
  • Phloroglucinol 단위체로 구성된 Oligomeric polyphenol인 Phlorotannins을 갈조류의 일종인 감태(Ecklonia cava)의 메탄올 추출물의 용매 분획으로부터 분리하였다. 산화스트레스에 대한 감태추출물의 용매분획으로부터 Phlorotannins의 억제효능을 주름형성과 연관성이 있는 사람피부섬유아세포(HDFs)에서 조사되었다. ESR spectroscopy 분석에서, 감태의 에틸아세테이트 분획으로 부터의 Phlorotannins에서 DPPH radical, Hydroxyl radical 및 Alkyl radical에 대하여 가장 높은 소거효능이 나타났다. 2',7'-Dichlorofluorescin diacetate (DCFH-DA)와 Diphenyl-1-pyrenylphosphine (DPPP)을 이용하여 세포내에서 활성산소종 및 지질과산화 수준을 측정하였다. 감태의 다른 용매 분획과 비교하여 에틸아세테이트 용매분획으로 부터의 Pphlorotannins의 존재에서 이들수준이 유의성 있게 감소되었다 (P < 0.01). 더욱이, Phlorotannins은 세포내의 Glutathione (GSH) 함량도 시간에 따라 증가시켰다. 그러므로, 이러한 결과들은 감태의 Phlorotannins이 산화적 스트레스와 연관성이 있는 주름형성 같은 여러가지 질환의 예방 및 치료에 잠재적인 효능이 있다는 것을 암시하고 있다.

  • PDF

산화적 스트레스에 대한 복합 한약재의 항 산화활성 검색 (Screening of Antioxidative Effect of Combined Medicinal Plants on Oxidative Stress)

  • 강경아;장예;강대길;김진숙;현진원
    • 한국환경성돌연변이발암원학회지
    • /
    • 제26권1호
    • /
    • pp.7-11
    • /
    • 2006
  • Reactive oxygen species (ROS) are known to cause oxidative modification of DNA, proteins, lipids and small cellular molecules and are associated with tissue damage and are the contributing factors for diabetes, inflammation, aging, cancer, arteriosclerosis, and hypertension. We screened the anti-oxidative effect on V79-4 hamster lung fibroblast cells induced by hydrogen peroxide with eleven extracts of combined medicinal plants. Dancheonhwankakambang and Samikangyabtang were found to show the scavenging activities of DPPH radical and intracellular reactive oxygen species, which is measured by dichlorodihydrofluorescin diacetate method (DCHF-DA).

  • PDF

Anti-oxidant Effect of Agastache rugosa on Oxidative Damage Induced by $H_2O_2$ in NIH 3T3 Cell

  • Hong, Se-Chul;Jeong, Jin-Boo;Park, Gwang-Hun;Kim, Jeong-Sook;Seo, Eul-Won;Jeong, Hyung-Jin
    • 한국자원식물학회지
    • /
    • 제22권6호
    • /
    • pp.498-505
    • /
    • 2009
  • The plant Agastache rugosa Kuntze has various physiological and pharmacological activities. Especially, it has been regarded as a valuable source for the treatment of anti-inflammatory and oxidative stress-induced disorders. However, little has been known about the functional role of it on oxidative damage in mammalian cells by ROS. In this study, we investigated the DPPH radical, hydroxyl radical, hydrogen peroxide and intracellular ROS scavenging capacity, and $Fe^{2+}$ chelating activity of the extracts from Agastache rugosa. In addition, we evaluated whether the extract can be capable of reducing $H_2O_2$-induced DNA and cell damage in NIH 3T3 cells. These extracts showed a dose-dependent free radical scavenging capacity and a protective effect on DNA damage and the lipid peroxidation causing the cell damage by $H_2O_2$. Therefore, these results suggest that Agastache rugosa is useful as a herbal medicine for the chemoprevention against oxidative carcinogenesis.

Modulatory effects of $\alpha$- and $\gamma$-tocopherols on 4-hydroxyestradiol induced oxidative stresses in MCF-10A breast epithelial cells

  • Lee, Eun-Ju;Oh, Seung-Yeon;Kim, Mi-Kyung;Ahn, Sei-Hyun;Son, Byung-Ho;Sung, Mi-Kyung
    • Nutrition Research and Practice
    • /
    • 제3권3호
    • /
    • pp.185-191
    • /
    • 2009
  • The elevated level of circulating estradiol increases the risk of breast tumor development. To gain further insight into mechanisms involved in their actions, we investigated the molecular mechanisms of 4-hydroxyestradiol (4-$OHE_2$) to initiate and/or promote abnormal cell growth, and of $\alpha$- or $\gamma$-tocopherol to inhibit this process. MCF-10A, human breast epithelial cells were incubated with $0.1{\mu}M$ 4-$OHE_2$, either with or without $30{\mu}M$ tocopherols for 96 h. 4-$OHE_2$ caused the accumulation of intracellular ROS, while cellular GSH/GSSG ratio and MnSOD protein levels were decreased, indicating that there was an oxidative burden. 4-$OHE_2$ treatment also changed the levels of DNA repair proteins, BRCA1 and PARP-1. $\gamma$-Tocopherol suppressed the 4-$OHE_2$-induced increases in ROS, GSH/GSSG ratio, and MnSOD protein expression, while $\alpha$-tocopherol up-regulated BRCA1 and PARP-1 protein expression. In conclusion, 4-$OHE_2$ increases oxidative stress reducing the level of proteins related to DNA repair. Tocopherols suppressed oxidative stress by scavenging ROS or up-regulating DNA repair elements.

PC12세포와 동물모델에서의 기억력 장애를 유도하는 산화적스트레스에 대한 취나물과 모과 복합추출물의 개선 효과 (Ameliorative Effect of Aster scaber Thunberg and Chaenoleles sinensis Koehne Complex Extracts Against Oxidative Stress-induced Memory Dysfunction in PC12 Cells and ICR Mice)

  • 박찬규;최수정;신동훈
    • 한국약용작물학회지
    • /
    • 제27권6호
    • /
    • pp.365-375
    • /
    • 2019
  • Background: Oxidative stress plays an important role in neuro-degenerative disorders such as Alzheimer's disease. Oxidative stress is mediated by reactive oxygen species (ROS), which are implicated in the pathogenesis of numerous diseases, and account for the toxicity of a wide range of compounds. Methods and Results: In order to study the neuro-protective effect of the complex extracts of Aster scaber Thunberg (AS) and Chaenoleles sinensis Koehne (CSK) against hydrogen peroxide in PC12 cells, cell viability was evaluated by the MTT assay using tetrazole, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and the intracellular ROS levels were determined the by 2',7'-dichlorofluorescein diacetate (DCF-DA) assay. In order to examine the anti-amnesic effects of the complex extracts of AS and CSK, behavioral tests were performed on male ICR mice. The ameliorating effect of the complex extracts against Aβ1-42-induced learning and memory impairment was analyzed by y-maze and passive avoidance tests. The AS and CSK extracts showed neuro-protective activity both in vitro and in vivo, and the neuro-protective effect of their 60 : 40 (AS : CSK) mixture was better than that of the other mixtures. Moreover, the complex extracts synergistically inhibited acetylcholinesterase activity and rapid peroxidation. Conclusions: A mixture of the AS and CSK extracts could be used to develop functional foods and serve as raw materials for the development of therapeutics against Alzheimer's disease.