Browse > Article

Effects of genistin from Vigna angularis on Lifespan-extending in Caenorhabditis elegans  

Lee, Eun Byeol (College of Pharmacy, Woosuk University)
Ahn, Dalrae (College of Pharmacy, Woosuk University)
Kim, Ban Ji (College of Pharmacy, Woosuk University)
Lee, So Yeon (College of Pharmacy, Woosuk University)
Cha, Youn-Soo (Dept. of Food Science and Human Nutrition, Chonbuk National University)
Kim, Mina (Dept. of Food Science and Human Nutrition, Chonbuk National University)
Song, Seuk Bo (Dept. of Functional Crop, National Institute of Crop Science, Rural Development Administration)
Kim, Dae Keun (College of Pharmacy, Woosuk University)
Publication Information
Korean Journal of Pharmacognosy / v.46, no.1, 2015 , pp. 17-22 More about this Journal
Abstract
Previous phytochemical studies of Vigna angularis (Ohwi) Ohwi & Ohashi (Leguminosae) have shown the presence of saponins and flavonoids. From the seed of V. angularis, genistein-7-O-${\beta}$-D-glucopyranoside (genistin) was isolated. Lifespan-extending effect of genistin was elucidated using Caenorhabditis elegans model system. Genistin showed potent lifespan extension of worms under normal culture condition. This compound also exhibited the protective effects against thermal and oxidative stress conditions. In the case of heat stress, genistin-treated worms exhibited enhanced survival rate, compared to control worms. In addition, genistin-fed worms lived longer than control worms under oxidative stress induced by paraquat. To verify the possible mechanism of genistin-mediated increased lifespan and stress resistance of worms, we investigated whether genistin might alter superoxide dismutase (SOD), catalase activities and intracellular ROS levels. Our results showed that genistin was able to elevate SOD and catalase activities of worms and reduce intracellular ROS accumulation in a dose-dependent manner.
Keywords
Vigna angularis; Genistin; Caenorhabditis elegans; Lifespan; SOD; catalase; ROS;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zhang, L., Jie, G., Zhang, J. and Zhao, B. (2009) Significant longevity-extending effects of EGCG on C. elegans under stress. Free Radic. Biol. Med. 46: 414-421.   DOI   ScienceOn
2 Kampkotter, A., Nkwonkam, C. G., Zurawski, R. F., Timpel, C., Chovolou, Y., Watjen, W. and Kahl, R. (2007) Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Arch. Toxicol. 81: 849-858.   DOI
3 Matrone, G., Smart, W. W. G., Carter, M. W., Smart, V. W., and Garren, H. W. (1956) Effect of genistin on growth and development of the male mouse. J. Nutr. 59: 235-241.
4 Yamaguchi, M. and Gao, Y. H. (1998) Anabolic effect of genistein and genistin on bone metabolism in the femoralmetaphyseal tissues of elderly rats: the genistein effect is enhanced by zinc. Mol. Cell Biochem. 178: 377-382.   DOI
5 Guarente, L. and Kenyon, C. (2000) Genetic pathways that regulate ageing in model organisms. Nature 408: 255-262.   DOI   ScienceOn
6 Collins, J. J., Evason, K. and Kornfeld, K. (2006) Pharmacology of delayed aging and extended lifespan of Caenorhabditis elegans. Exp. Gerontol. 41: 1032-1039.   DOI
7 Petrascheck, M., Ye, X. and Buck, L. B. (2007) An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 450, 553-556.   DOI
8 Melov, S., Ravenscroft, J., Malik, S., Gill, M. S., Walker, D. W., Clayton, P. E., Wallace, D. C., Malfroy, B., Doctrow, S. R. and Lithgow, G. J. (2000) Extension of life-span with superoxide dismutase/catalase mimetics. Science 289: 1567-1569.   DOI
9 Schriner, S. E., Linford, N. J., Martin, G. M., Treuting, P., Ogburn, C. E., Emond, M., Coskun, P. E., Ladiges, W., Wolf, N., Van Remmen, H., Wallace, D. C. and Rabinovitch, P. S. (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308: 1909-1911.   DOI
10 Sampayo, J. N., Gill, M. S. and Lithgow, G. J. (2003) Oxidative stress and aging-the use of superoxide dismutase/catalase mimetics to extend lifespan. Biochem. Soc. Trans. 31: 1305-1307.   DOI
11 Ibrahim, H. R., Hoq, M. I. and Aoki, T. (2007) Ovotransferrin possesses SOD-like superoxide anion scavenging activity that is promoted by copper and manganese binding. Int. J. Biol. Macromol. 41: 631-640.   DOI
12 Lithgow, G. J., White, T. M., Melov, S. and Johnson, T. E. (1995) Thermo tolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. 92: 7540-7544.   DOI
13 Lee, E. Y., Shim, Y. H., Chitwood, D. J., Hwang, S. B., Lee, J. and Paik, Y. K. (2005) Cholesterol-producing transgenic Caenorhabditis elegans lives longer due to newly acquired enhanced stress resistance. Biochem. Biophys. Res. Commun. 328: 929-936.   DOI   ScienceOn
14 Agrawal, P. K. (1989) Carbon-13 NMR of flavonoids. 154-155, Elsevier, New York.
15 Mekheimer, R. A., Sayed, A. A. and Ahmed, E. A. (2012) Novel 1,2,4-triazolo[1,5-a]pyridines and their fused ring systems attenuate oxidative stress and prolong lifespan of Caenorhabiditis elegans. J. Med. Chem. 55: 4169-4177.   DOI   ScienceOn
16 Aebi, H. (1984) Catalase in vitro. Method. Enzymol. 105: 121-126.   DOI
17 Kim, D. K., Jeon, H. and Cha, D. S. (2014) 4-Hydroxy-benzoic acid-mediated lifespan extension in Caenorhabditis elegans. J. Funct. Foods 7: 630-640.   DOI
18 Kim, H.-J., Kim, M.-K., Shim, J.-G., Yeom, S.-H., Kwon, S.-H. and Lee, M.-W. (2004) Anti-oxidative phenolic compounds from Sophorae Fructus. Nat. Prod. Sci. 10: 330-334.
19 Kato, K., Takahashi, S., Cui, L., Toda, T., Suzuki, S., Futakuchi, M., Sugiura, S. and Shirai, T. (2000) Suppressive effects of dietary genistin and daidzin on rat prostate carcinogenesis. Jpn. J. Cancer Res. 91, 786-791.   DOI
20 Takahama, U, Yamauchi, R. and Hirota, S. (2013) Isolation and characterization of a cyanidin-catechin pigment from adzuki bean (Vigna angularis). Food Chem. 141: 282-288.   DOI
21 Yu, T., Ahn, H. M., Shen, T., Yoon, K., Jang, H. J., Lee, Y. J., Yang, H. M., Kim, J. H., Kim, C., Han, M. H., Cha, S. H., Kim, T. W., Kim, S. Y., Lee, J. and Cho, J. Y. (2011) Anti-inflammatory activity of ethanol extract derived from Phaseolus angularis beans. J. Ethnopharmacol. 137: 1197-1206.   DOI   ScienceOn
22 Iida, T., Yoshiki, Y., Kahara, T., Okubo, K. and Ohrui, H. (1997) A saponin conjugated with 2,3-dihydro-2,5-dihy-droxy-6-methyl-4H-pyran-4-one from Vigna angularis. Phytochemistry 45: 1507-1509.   DOI
23 Lee, E. B., Ahn, D., Kim, B. J., Lee, S. Y., Seo, H. W., Cha, Y. S., Jeon, H., Eun, J. S., Cha, D. S. and Kim, D. K. (2015) Genistein from Vigna angularis extends lifespan in Caenorhabditis elegans. Biomol. Ther. 23: 77-83.   DOI
24 Iida, T., Yoshiki, Y., Kahara, T., Okubo, K., Ohrui, H., Kinjo, J. and Nohara, T. (1999) Triterpenoid saponins from Vigna angularis. Phytochemistry 51: 1505-1508.   DOI
25 Yao, Y., Cheng, X., Wang, L., Wang, S. and Ren, G. (2011) A determination of potential α-glucosidase inhibitors from azuki beans (Vigna angularis). Int. J. Mol. Sci. 12: 6445-6451.   DOI
26 Lee, E. B., Ahn, D., Kim, B. J., Lee, S. Y., Cha, Y. S., Lee, J. H., Park, J. S. and Kim, D. K. (2014) Effects of ethyl acetate fraction of Vigna angularis on stress resistances and antioxidative activities in Caenorhabditis elegans. Kor. J. Pharmacogn. 5: 227-232.
27 Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94.
28 Pinazo-Durán, M. D., Gallego-Pinazo, R., García-Medina, J. J., Zanón-Moreno, V., Nucci, C., Dolz-Marco, R., Martínez-Castillo, S., Galbis-Estrada, C., Marco-Ramírez, C., López-Gálvez, M. I., Galarreta, D. J. and Díaz-Llópis, M. (2014) Oxidative stress and its downstream signaling in aging eyes. Clin. Interv. Aging 9: 637-652.   DOI
29 Petropoulou, C., Chondrogianni, N., Simoes, D., Agiostratidou, G., Drosopoulos, N., Kotsota, V. and Gonos, E. S. (2000) Ageing and longevity: a paradigm of complementation between homeostatic mechanisms and genetic control? Ann. NY Acad. Sci. 908: 133-142.   DOI
30 Si, H. and Liu, D. (2014) Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. J. Nutr. Biochem. 25: 581-591.   DOI
31 Pandey, R., Gupta, S., Shukla, V., Tandon, S. and Shukla, V. (2013) Antiaging, antistress and ROS scavenging activity of crude extract of Ocimum sanctum (L.) in Caenorhabditis elegans (Maupas, 1900). Indian J. Exp. Biol. 51: 515-521.
32 Finkel, T. and Holbrook, N. J. (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408: 239-247.   DOI
33 Obrenovich, M. E., Nair, N. G., Beyaz, A., Aliev, G. and Reddy, V. P. (2010) The role of polyphenolic antioxidants in health, disease, and aging. Rejuvenation Res. 13: 631-643.   DOI
34 Gopaul, R., Knaggs, H. E. and Lephart, E. D. (2012) Biochemical investigation and gene analysis of equol: a plant and soy-derived isoflavonoid with antiaging and antioxidant properties with potential human skin applications. Biofactors 38: 44-52   DOI
35 Sato, S., Mukai, Y. and Yamate, J. (2009) Beneficial effects of azuki bean (Vigna angularis) extract: anti-oxidant, antihypertension, and treatment for renal damage. Current Nutrition & Food Science 5: 217-222.   DOI