• 제목/요약/키워드: intestinal physiology

검색결과 166건 처리시간 0.028초

다시마 (Laminaria japonicus) Alginate의 가열가수분해에 따른 물리$\cdot$화학적 및 생물학적 특성에 관한 연구 6. 랫드 분변의 장내균총의 변화에 미치는 저분자 Alginate의 영향 (Studies on Physicochemical and Biological Properties of Depolymerized Alginate from Sea tangle, Laminaria japonicus by Thermal Decomposition 6. Effects of Depolymerized Alginate on fecal Microflora in Rats)

  • 김육용;조영제
    • 한국수산과학회지
    • /
    • 제34권2호
    • /
    • pp.77-83
    • /
    • 2001
  • 저분자 alginate인 HAG-10, HAG-50, HAG-100 및 alginate를 랫드에 장기간 섭취시켰을 때, 분변중의 장내미생물균총의 변화를 관찰하여 소화생리의 특성을 개선시키는 최적의 저분자 alginate를 찾고자 실험하였으며 그 결과를 요약하면 다음과 같다. In vitro에 있어서 대표적인 장내세균에 의한 HAG-10, HAG-50, HAG-100 및 alginate의 기질이용성을 조사한 결과, Bacteroides ovatus는 기질로 이용하였으며, Megamonss hypemegas는 약간의 증식하였으나, 그 외의 대부분의 균주는 기질로써의 이용성을 전혀 나타내지 않았다. 분변중 장내균총의 변화는 $10\%$ HAG-10, $1\%$, $5\%$$10\%$ HAG-50 그리고 $1\%$ alginate에서 Bindobacterium과 Lactobacillus 모두 유의적으로 증가하는 경향을 보였으나 유해미생물들은 현저히 감소하였으며, $5\%$$10\%$ alginate에서는 반대로 유익균의 증식이 억제되고 유해균의 증식이 현저히 촉진되었다. 이상의 결과로부터, 저분자 alginate는 대부분의 장내세균에 대한 기질로서의 이용특성을 나타내지 못하는 전형적인 식이섬유원이었으며, 또한 랫드에 있어서 HAG-50의 섭취는 alginate 고유의 기능적 특성을 그대로 유지하면서 장내세균중 유익균인 Bifdobacterium과 Lactobacillus의 증식을 촉진시키고 유해미생물의 증식을 억제하여 장내미생물균총을 개선시키는 최적의 저분자 alginate임을 알 수 있었다.

  • PDF

The Inhibitory Effects of Hydrogen Sulfide on Pacemaker Activity of Interstitial Cells of Cajal from Mouse Small Intestine

  • Parajuli, Shankar Prasad;Choi, Seok;Lee, Jun;Kim, Young-Dae;Park, Chan-Guk;Kim, Man-Yoo;Kim, Hyun-Il;Yeum, Cheol-Ho;Jun, Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권2호
    • /
    • pp.83-89
    • /
    • 2010
  • In this study, we studied whether hydrogen sulfide ($H_2S$) has an effect on the pacemaker activity of interstitial cells of Cajal (ICC), in the small intestine of mice. The actions of $H_2S$ on pacemaker activity were investigated using whole-cell patch-clamp technique, intracellular $Ca^{2+}$ analysis at $30^{\circ}C$ and RT-PCR in cultured mouse intestinal ICC. Exogenously applied sodium hydrogen sulfide (NaHS), a donor of hydrogen sulfide, caused a slight tonic inward current on pacemaker activity in ICC at low concentrations (50 and $100{\mu}m$), but at high concentration ($500{\mu}m$ and 1 mM) it seemed to cause light tonic inward currents and then inhibited pacemaker amplitude and pacemaker frequency, and also an increase in the resting currents in the outward direction. Glibenclamide or other potassium channel blockers (TEA, $BaCl_2$, apamin or 4-aminopydirine) did not have an effect on NaHS-induced action in ICC. The exogenous application of carbonilcyanide p-triflouromethoxyphenylhydrazone (FCCP) and thapsigargin also inhibited the pacemaker activity of ICC as NaHS. Also, we found NaHS inhibited the spontaneous intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) oscillations in cultured ICC. In doing an RT-PCR experiment, we found that ICC enriched population lacked mRNA for both CSE and CBS, but was prominently detected in unsorted muscle. In conclusion, $H_2S$ inhibited the pacemaker activity of ICC by modulating intracellular $Ca^{2+}$. These results can serve as evidence of the physiological action of $H_2S$ as acting on the ICC in gastrointestinal (GI) motility.

Effects of Protopanaxatriol-Ginsenoside Metabolites on Rat $N$-Methyl-D-Aspartic Acid Receptor-Mediated Ion Currents

  • Shin, Tae-Joon;Hwang, Sung-Hee;Choi, Sun-Hye;Lee, Byung-Hwan;Kang, Ji-Yeon;Kim, Hyeon-Joong;Zukin, R. Suzanne;Rhim, Hye-Whon;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권2호
    • /
    • pp.113-118
    • /
    • 2012
  • Ginsenosides are low molecular weight glycosides found in ginseng that exhibit neuroprotective effects through inhibition of $N$-methyl-D-aspartic acid (NMDA) receptor channel activity. Ginsenosides, like other natural compounds, are metabolized by gastric juices and intestinal microorganisms to produce ginsenoside metabolites. However, little is known about how ginsenoside metabolites regulate NMDA receptor channel activity. In the present study, we investigated the effects of ginsenoside metabolites, such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT), on oocytes that heterologously express the rat NMDA receptor. NMDA receptor-mediated ion current ($I_{NMDA}$) was measured using the 2-electrode voltage clamp technique. In oocytes injected with cRNAs encoding NMDA receptor subunits, PPT, but not CK or PPD, reversibly inhibited $I_{NMDA}$ in a concentration-dependent manner. The $IC_{50}$ for PPT on $I_{NMDA}$ was $48.1{\pm}4.6\;{\mu}M$, was non-competitive with NMDA, and was independent of the membrane holding potential. These results demonstrate the possibility that PPT interacts with the NMDA receptor, although not at the NMDA binding site, and that the inhibitory effects of PPT on $I_{NMDA}$ could be related to ginseng-mediated neuroprotection.

(-)-Epigallocatechin Gallate Inhibits the Pacemaker Activity of Interstitial Cells of Cajal of Mouse Small Intestine

  • Kim, Kweon-Young;Choi, Soo-Jin;Jang, Hyuk-Jin;Zuo, Dong-Chuan;Shahi, Pawan Kumar;Parajuli, Shankar Prasad;Yeum, Cheol-Ho;Yoon, Pyung-Jin;Choi, Seok;Jun, Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권3호
    • /
    • pp.111-115
    • /
    • 2008
  • The effects of (-)-epigallocatechin gallate (EGCG) on pacemaker activities of cultured interstitial cells of Cajal (ICC) from murine small intestine were investigated using whole-cell patch-clamp technique at $30^{\circ}C$ and $Ca^{2+}$ image analysis. ICC generated spontaneous pacemaker currents at a holding potential of -70 mV. The treatment of ICC with EGCG resulted in a dose-dependent decrease in the frequency and amplitude of pacemaker currents. SQ-22536, an adenylate cyclase inhibitor, and ODQ, a guanylate cyclase inhibitor, did not inhibit the effects of EGCG. EGCG-induced effects on pacemaker currents were not inhibited by glibenclamide, an ATP-sensitive $K^+$ channel blocker and TEA, a $Ca^{2+}$-activated $K^+$ channel blocker. Also, we found that EGCG inhibited the spontaneous $[Ca^{2+}]_i$ oscillations in cultured ICC. In conclusion, EGCG inhibited the pacemaker activity of ICC and reduced $[Ca^{2+}]_i$ oscillations by cAMP-, cGMP-, ATP-sensitive $K^+$ channel-independent manner.

쑥(Artemisia asiatica Nakai)이 가토(家兎)의 척출장관운동(剔出腸管運動)에 미치는 영향 (The Effect of Mugwort(Artemisia asiatica Nakai) Juice on the Motility of the Isolated Rabbit Duodenum)

  • 김기영;신홍기;김기순
    • The Korean Journal of Physiology
    • /
    • 제14권1호
    • /
    • pp.41-45
    • /
    • 1980
  • It has long teen known in herbal medicine that the mugwort not only exerts a strong hemostatic and parasiticidal actions but also has therapeutic effects for stomachache and diarrhea. In recent pharmaceutical botany the mugwort is known to have antipyretic and astringent actions also. Among the major principles which have been found in the leaves and stems of mugwort are inulin, alkaloids, vitamines, and esestial oil. It is well known that santonin, one of the well known parasiticides, is one of the glucosides extracted from the limited species of mugwort. The present study was undertaken to investigate effects of mugwort(Artemisia asiatica Nakai) on the motility of isolated rabbit duodenum. The results obtained are as follows: At does of 0.2%, 0.5% and 1. 0% AAJ(Artemisia asiatica juice) markedly enhanced contractility of isolated duodenum and tonus of the intestine was also augmented with doses of 0.5% and 1.0%. The augmentative effect of AAJ on intestinal motility was not affected by pretreatment with epinephrine and avil while it was completely abolished by atropine. Therefore it is strongly suggested that augmentative action of AAJ on duodenal motility was exerted solely through muscarinic cholinergic receptors.

  • PDF

위, 소장, 대장의 하합혈 침구자극이 Loperamide로 유발된 변비의 장관 운동성에 미치는 영향 (Effects of Acupuncture and Moxibustion at Lower Sea Points on the Intestinal Motility with Loperamide-Induced Constipation in Rats)

  • 유윤조;권오상;양승범;김민수;김재효
    • Korean Journal of Acupuncture
    • /
    • 제30권4호
    • /
    • pp.272-280
    • /
    • 2013
  • Objectives : The aim of this study was to observe effects of manual acupuncture(MA), electro-acupuncture(EA) and moxibustion (MO) on the rat with loperamide-induced constipation. Methods : This study measured small intestinal motility and number of fecal pellets in rats with loperamide induced constipation. MA and EA(intensity, 5 times muscle twitch threshold) was applied for 30 minutes and MO was treated on 5 times moxa cautery to the groups divided with age and sex. Results : The small intestinal motility was decreased by ST36 EA and ST37 EA in 5 weeks male group and ST37 EA in 7 weeks male and female groups, and ST36 MO in 7 weeks female group, but it was increased by ST39 EA in 7 weeks male group and ST37 MO and ST39 MO in 7 weeks male group. The number of fecal pellets was decreased by MA, EA, MO of ST36 in all group except 5, 7 weeks male groups only, and MA, EA of ST37 in 5, 7 weeks male group and ST37 MO in 7 weeks female group, and ST39 EA in 5 weeks male group and 7 weeks female group and ST39 MO in 7 weeks female group, but increased by ST37 EA in 5 weeks female group and ST39 EA in 7 weeks male group. Conclusions : Although these differences do not have a established tendency, it suggests that acupuncture and moxibustion are experimentally dependent upon the sex and age on intestinal motility in rats.

Effect of Lactobacillus salivarius on growth performance, diarrhea incidence, fecal bacterial population and intestinal morphology of suckling pigs challenged with F4+ enterotoxigenic Escherichia coli

  • Sayan, Harutai;Assavacheep, Pornchalit;Angkanaporn, Kris;Assavacheep, Anongnart
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1308-1314
    • /
    • 2018
  • Objective: Gut health improvements were monitored with respect to growth performance, diarrhea incidence, fecal bacterial population and intestinal morphology of suckling pigs orally supplemented with live Lactobacillus salivarius (L. salivarius) oral suspensions and challenged with $F4^+$ enterotoxigenic Escherichia coli (ETEC). Methods: Two groups of newborn pigs from 18 multiparous sows were randomly designated as non-supplemented (control: n = 114 piglets) and L. salivarius supplemented groups (treatment: n = 87 piglets). Treatment pigs were orally administered with 2 mL of $10^9$ colony-forming unit (CFU)/mL L. salivarius on days 1 to 3, then they were orally administered with 5 mL of $10^9CFU/mL$ L. salivarius on days 4 to 10, while those in control group received an equal amount of phosphate buffered saline solution. On day 24 (2 weeks post supplementation), one pig per replicate of both groups was orally administered with $10^8CFU/mL$ $F4^+$ ETEC, then they were euthanized on day 29 of experiment. Results: Results revealed that pigs in treatment group had a statistically significant increase in average daily gain, body weight and weight gain, and tended to lower diarrhea throughout the study. Numbers of Lactobacillus population in feces of treatment pigs were higher than control pigs, especially on day 10 of study. Numbers of total bacteria in intestinal contents of control pigs were also increased, but not Coliform and Lactobacillus populations. Histological examination revealed statistically significant improvements of villous height and villous/crypt ratio of duodenum, proximal jejunum and distal jejunum parts of treatment pigs compared with controls. Duodenal pH of treatment group was significantly decreased. Conclusion: Oral supplementation of live L. salivarius during the first 10 days of suckling pig promoted growth performance and gut health, reduced diarrhea incidence, increased fecal Lactobacillus populations and improved intestinal morphology.

Protective Effect of Rutin on Splanchnic Injury Following Ischemia and Reperfusion in Rats

  • Lee, Hyang-Mi;Jang, Yoon-Young;Song, Jin-Ho;Kim, Kwang-Joon;Lim, In-Ja;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권4호
    • /
    • pp.323-331
    • /
    • 2001
  • A splanchic artery occlusion for 90 min followed by reperfusion of the mesenteric circulation resulted in a severe form of circulatory shock characterized by endothelial dysfunction, severe hypotension, marked intestinal tissue injury, and a high mortality rate. The effect of rutin, a flavonoid having antiprostanoid, anti-inflammatory, antithrombotic, antioxidant effect, were investigated in a model of splanchnic artery occlusion (SAO) shock in urethane anesthetized rats. Occlusion of the superior mesenteric artery for 90 min produced a severe shock state resulted in a fatal outcome within 120 min of reperfusion in many rats. Rutin was given as a bolus (1.28 mg/kg) 10 min prior to reperfusion. Administration of rutin significantly improved mean arterial blood pressure in comparison to vehicle treated rats (p<0.05). Rutin treatment also resulted in a significant attenuation in the increase in plasma amino nitrogen concentration, intestinal myeloperoxidase activity, intestinal lipid peroxidation, infiltration of neutrophils in intestine and thrombin induced adherence of neutrophils to superior mesentric artery segments. These results suggest that rutin provides beneficial effects in part by preserving endothelial function and attenuating neutrophil accumulation in the ischemic reperfused splanchnic circulation.

  • PDF

개울화담전(開鬱化痰煎)이 흰쥐 소장(小腸) 수송능(輸送能)과 위액분비에 미치는 영향 (Effect of Gaewool-Whadam-Jian on Transport Ability of Small Intestine and Secretion of Gastric Juice in the Rat)

  • 김희철;이영수
    • 동의생리병리학회지
    • /
    • 제19권5호
    • /
    • pp.1330-1336
    • /
    • 2005
  • This study was carried out to investigate the motor activity and glucose transport and metabolism of Gaewool-Whadam-Jian(GWJ) in rat gastro-intestinal tract. The motor activity of the rat gastro-intestinal tract has been investigated by means of measuring barium sulfate passage degrees. Atropine treatment significantly delayed barium sulfate transit, and GWJ pretreatment increased intestinal motor activity, but not significant. GWJ administration showed no toxicity to kidney and liver. Transport and metabolism of glucose were studied in everted sac of rat small intestine with incubation under several conditions. The transport and metabolism of glucose were greater at jejunum than ileum. So, everted jejunum of rat were used to study the effect of GWJ. When GWJ were treated, the concentration of glucose were higher than untreated group. This result was thought to be influenced by the glucose in GWJ. When 2, 4 dinitrophenol and phlorizin were treated, the transport and metabolism of glucose were decreased, but GWJ treated together, the concentration of glucose in serosal solution increased. Gastric juice secretion and total acidity significantly decreased by administration of GWJ through duodenum region. The mechanism of effect of GWJ was still unidentified, Dut through continuous investigation, the effect of GWJ should be investigated.

Pathophysiology and protective approaches of gut injury in critical illness

  • Jung, Chang Yeon;Bae, Jung Min
    • Journal of Yeungnam Medical Science
    • /
    • 제38권1호
    • /
    • pp.27-33
    • /
    • 2021
  • The gut is a complex organ that has played an important role in digestion, absorption, endocrine functions, and immunity. The gut mucosal barriers consist of the immunologic barrier and nonimmunologic barrier. During critical illnesses, the gut is susceptible to injury due to the induction of intestinal hyperpermeability. Gut hyperpermeability and barrier dysfunction may lead to systemic inflammatory response syndrome. Additionally, gut microbiota are altered during critical illnesses. The etiology of such microbiome alterations in critical illnesses is multifactorial. The interaction or systemic host defense modulation between distant organs and the gut microbiome is increasingly studied in disease research. No treatment modality exists to significantly enhance the gut epithelial integrity, permeability, or mucus layer in critically ill patients. However, multiple helpful approaches including clinical and preclinical strategies exist. Enteral nutrition is associated with an increased mucosal barrier in animal and human studies. The trophic effects of enteral nutrition might help to maintain the intestinal physiology, prevent atrophy of gut villi, reduce intestinal permeability, and protect against ischemia-reperfusion injury. The microbiome approach such as the use of probiotics, fecal microbial transplantation, and selective decontamination of the digestive tract has been suggested. However, its evidence does not have a high quality. To promote rapid hypertrophy of the small bowel, various factors have been reported, including the epidermal growth factor, membrane permeant inhibitor of myosin light chain kinase, mucus surrogate, pharmacologic vagus nerve agonist, immune-enhancing diet, and glucagon-like peptide-2 as preclinical strategies. However, the evidence remains unclear.