
Introduction 

The gut is a complex organ that carries out important functions in-
cluding digestion, absorption, endocrine regulation, and immuni-
ty. Microscopically, the gut wall consists of the serosa, muscularis 
propria, submucosa, and mucosa. The mucosa consists of the epi-
thelium, lamina propria, crypt of Lieberkühn, and so on. The gut is 
covered by an epithelial layer with a surface area of 30 m2. The size 
of the surface area is similar in size to half a badminton court [1]. 
The epithelium plays a critical role as the first line of protection 
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against pathogens and is important for the management of host 
homeostasis. Additionally, it is the central coordinator of mucosal 
immunity [2]. The lamina propria serves as a protective layer 
against microorganisms and is rich in immune cells. The gut is a 
continuously renewing organ with the majority of cells turning 
over within 1 week [3]. Several intestinal cells including absorptive 
enterocytes, mucus-producing goblet cells, hormone-producing 
enteroendocrine cells, and tuft cells are differentiated from intesti-
nal stem cells residing near the base of crypt of Lieberkühn [4,5].  

As a result of constant microorganism exposure, the gut has sig-
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nificant immune function. Initially, several lymphoid cells in the 
lamina propria and Peyer’s patch can detect pathogenic antigens. 
From these lymphoid cells, afferent lymphatics are drained from 
the mesenteric lymph nodes. Secretory immunoglobulins (Ig) in-
cluding secretory IgA and immune cells can subsequently inhibit 
the pathogenicity of the antigen. Notably, secretory IgA inhibits 
the adherence of bacteria to the epithelium and prevents their col-
onization and multiplication. In addition, secretory IgA neutralizes 
bacterial toxins and viral activity and blocks the absorption of anti-
gens from the gut [6]. These complex immune responses, cellular 
reactions, and immune cascades in the gut are called mucosal bar-
riers [6]. 

These mucosal barriers consist of immunologic and nonimmu-
nologic barriers. The immunologic barrier consists of secretory 
IgA and IgM lymphocytes. The nonimmunologic barrier consists 
of digestive enzymes, mucus, peristalsis, and gut flora [6]. In ani-
mal studies, sepsis can induce a decrease in the crypt proliferation 
and a diminution of the villus length [7,8]. 

Mucus plays an important role in the mucosal defense by pre-
venting the traversal of bacteria, digestive enzymes, and water-solu-
ble toxic molecules into the mucosal surface [9]. In critical illness-
es, the role of the mucus is compromised. Consequently, the dam-
age to the mucus layer results in epithelial cell dysfunction. Gut 
ischemia/reperfusion leads to the loss of hydrophobicity of the 
mucus layer and altered intestinal permeability [9]. 

Under normal circumstances, approximately 40 trillion microor-
ganisms reside within the gut. Gut microbiota can degrade dietary 
plant polysaccharides and proteins, to a small degree, by fermenta-
tion. The main end products of the fermentation are short-chain 
fatty acids (SCFAs) such as butyrate, acetate, and propionate. The 
SCFAs play an essential role in the maintenance of colonic integri-
ty and metabolism. It has been shown that butyrate serves as the 
main energy source for colonocytes [10,11]. Several mechanisms 
regarding the maintenance of gut stability and homeostasis by mi-
crobiota have been proposed [12]. 

Preclinical studies have shown that the microbiome is essential 
for the protection against enteric and systemic pathogens through 
diverse mechanisms [13]. First, commensal microbiota can direct-
ly outcompete with intestinal pathogen or kill potential invaders by 
producing defensins and signaling molecules [14]. Second, micro-
biota are potent inducers of the immune system [15]. 

Pathophysiology of gut injury 

During critical illnesses, it is commonly observed that the gut is 
susceptible to injury [16]. In the intensive care unit (ICU), ap-
proximately 50% of the patients experience enterocyte damage 

[17]. The gut has been hypothesized to be the “motor” of critical 
illness [18,19]. This theory is based on the fact that critical illness 
induces intestinal hyperpermeability, leading to bacterial transloca-
tion and subsequent systemic infection. Gut damage causes gastro-
intestinal (GI) symptoms. The GI symptoms caused by gut dam-
age occur in approximately 62% of the patients in ICUs [17]. 

In the 1970s, a gut mucosal damage grading system in the shock 
state was proposed [20]. Recently, a GI dysfunction grading sys-
tem for critically ill patients was developed by the Working Group 
on Abdominal Problem (WGAP) of the European Society of In-
tensive Care Medicine (ESICM) [21]. Acute GI injury (AGI) 
grade I refers to the development of new GI symptoms, such as 
vomiting, gastric residual volume, diarrhea, GI bleeding, paralysis 
of the lower GI tract, or abnormal bowel sounds related to a 
known cause and perceived as transient (risk of developing GI dys-
function or failure). AGI grade II refers to a lack of improvement in 
these symptoms and no change in the general condition. This 
grade is an indication for intervention (for example, prokinetics, 
postpyloric feeding) to restore the GI function. AGI grade III re-
fers to the persistence of GI symptoms or worsening of multiple 
organ dysfunction syndrome and lack of improvement in enteral 
feeding. This means that interventions cannot restore the GI func-
tion. Lastly, AGI grade IV refers to the presence of acute life-threat-
ening GI problems [21] (Table 1). Studies regarding these grading 
systems have shown that critically ill patients with GI dysfunction 
have higher mortality rates than patients without AGI [22].  

During critical illness, excessive or inadequate adaptive respons-
es evoked by intensive stress can have negative effects on the gut 
motility, mucosal blood flow, and mucosal permeability [19,23-
26]. Gut hyperpermeability and barrier dysfunction may lead to a 
systemic inflammatory response syndrome, a clinical state that is 
also called “gut-derived sepsis” [27]. Sepsis induces a decrease in 
the crypt proliferation [7]. Critical illness induces gut mucosal hy-
perpermeability as early as 1 hour after the onset of sepsis and lasts 
at least 48 hours [3]. 

In addition, catecholamines administered to treat shock may 
lead to decreased microvascular perfusion in the gut [28]. This in-
duces an increase of apoptosis and decrease of proliferation of 
small bowel mucosal cells, leading to the thinning of gut mucosa 
[29]. The resulting gut damage is exacerbated in the presence of 
chronic comorbidities such as cancer and chronic alcohol abuse 
[30,31]. Such injuries result in the impairment of the gut barrier 
and dysregulation of intestinal microbiota [32,33]. Therefore, 
small-intestinal mucosal integrity may be damaged in critically ill 
patients, leading to an increased intestinal permeability and intoler-
ance to enteral nutrition [34]. 

Additionally, the gut microbiota is altered during conditions of 
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critical illness. Within hours of the onset of a critical illness, the 
normal microbiota can convert to a disease-promoting pathobi-
ome [35]. The diversity of a microbiome is significantly impaired 
during critical illness [3]. The etiology of such microbiome alter-
ation in critical illness is multifactorial. These factors include an 
isolated host milieu, ancestral or newly expressed genes, numerous 
medical drugs, nutrients, and nutrition support routes [3]. In in-
jured gut microbiota, diet is the key to shaping the ecosystem of 
the gut microbiome, which is important for host metabolism [36]. 
In critically ill patients, the microbiota can be severely altered to be-
come unstable [37]. 

Critical illness leads to multiple changes to the microbiome, in-
cluding the loss of diversity and overgrowth of pathogenic bacteria 
[38]. Distortion of the composition and diversity of the gut micro-
biome is defined as “dysbiosis.” Recently, it has been hypothesized 
that gut microbiome injury can cause distant organ injury. Micro-
biota-derived components such as pathogen-associated molecular 
patterns and metabolites derived from the gut can reach the circu-
latory system and interact at a systemic level to influence the im-
mune homeostasis [39,40]. 

Such interactions or systemic host defense modulations be-
tween a distant organ and the gut microbiome is increasingly stud-
ied in disease research. Subsequently, the theory of gut-organ axes 
(gut-lung axis, gut-brain axis, gut-kidney axis, and gut-liver axis) 
has been developed [40]. 

1. Gut-lung axis 
Evidence regarding the gut-lung axis emerged 20 years ago from 
rat model studies of trauma and hemorrhagic shock [41]. It was 
demonstrated that during trauma and hemorrhagic shock, gut-de-
rived compounds translocated through the mesenteric lymph, 
causing distal lung injury [42]. 

2. Gut-brain axis 
Recent research has shown that an extensive crosstalk between the 
gut microbiome and the brain through neuropeptides or endo-
crine processes, immune system signaling, and nerve signaling. 
The gut microbiome has been suggested to play a role in the cogni-
tive function and behavior [43,44]. 

3. Gut-kidney axis 
Recent murine studies have shown that therapy with SCFAs in-
cluding acetate, propionate, and butyrate has protective effects in 
an ischemia/reperfusion model of acute kidney injury [45]. How-
ever, another study showed that the renal resident macrophages in 
the normal gut microbiome were sensitive to renal ischemia/
reperfusion injury, resulting in initiation of inflammation and sub-
sequent nephropathy after renal injury. 

In contrast, the renal resident macrophages in a depleted gut mi-
crobiome are less sensitive to renal ischemia/reperfusion injury, re-
sulting in an increased protection against renal ischemia/reperfu-

Table 1. Definition, example, and management of acute gastrointestinal (GI) injury

Grade Definition Example Management
I The function of the GI tract is partially impaired, 

expressed as GI symptoms related to a known 
cause, and perceived as transient

Postoperative nausea and/or vomiting during 
the first days after abdominal surgery,  
postoperative absence of bowel sounds,  
diminished bowel motility in the early phase 
of shock

Start or increase enteral feeding
Re-evaluate daily

II The GI tract is not able to perform digestion and 
absorption adequately to satisfy the nutrient 
and fluid requirements of the body. There are 
no changes in general condition of the patient 
related to GI problems

Gastroparesis with high gastric residuals or  
reflux, paralysis of the lower GI tract, diarrhea, 
IAH grade I (IAP 12–15 mmHg), visible blood 
in gastric content or stool. Feeding intolerance 
is present if intake of at least 20 kcal/kg BW 
per day (84 kJ/kg BW per day) via enteral 
route cannot be achieved within 72 hr of 
feeding attempt

Start therapy according to the symptom  
(e.g., prokinetics)

Measure IAP
Start minimal enteral feeding
Consider postpyloric feeding

III Loss of GI function and restoration of GI  
function is not achieved despite interventions, 
and the general condition is not improving

Despite treatment, feeding intolerance is  
persisting: high gastric residuals, persisting GI 
paralysis, occurrence or worsening of bowel 
dilatation, progression of IAH to grade II (IAP 
15–20 mmHg), low APP (<60 mmHg)  
Feeding intolerance is present and possibly 
associated with persistence or worsening of 
multiple organ dysfunction syndrome

Search for undiagnosed abdominal pathology
Continue therapy according to the symptom 

(e.g., prokinetics)
Treat IAH
Try (challenge) minimal feeding and start  

parenteral nutrition

IV Acute GI injury has progressed to become  
directly and immediately life threatening, with 
worsening of multiple organ dysfunction  
syndrome and shock

Bowel ischemia with necrosis, GI bleeding lead-
ing to hemorrhagic shock, Ogilvie’s syndrome, 
abdominal compartment syndrome requiring 
decompression

Requiring laparotomy or other emergency  
interventions (e.g., colonoscopy for colonic 
decompression)

Based on Reintam Blaser et al. [21].
IAH, intraabdominal hypertension; IAP, intraabdominal pressure; BW, body weight; kJ, kilojoules; APP, abdominal perfusion pressure.
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sion injury [46]. 

4. Gut-liver axis 
The liver may also be injured when the gut is injured. The liver is 
exposed to bacterial components and their metabolites via portal 
flow from the gut [47]. Therefore, the maintenance of gut mucosal 
integrity during critical illness is very important. 

Protection of gut and several approaches to 
enhancing gut integrity and permeability 

No treatment modality exists to significantly enhance the gut epi-
thelial integrity, permeability, or mucus layer in critically ill pa-
tients. However, multiple helpful approaches including clinical and 
preclinical strategies exist. In animal studies, enteral nutrition can 
increase the blood flow in the gut during a “postprandial hyper-
emic response.” This may preserve the gut integrity and prevent 
gut-derived complications [48,49]. 

Enteral feed is associated with an increased mucosal mass and 
villus height in animal and human studies [50,51]. The trophic ef-
fects of enteral nutrition may help to maintain the intestinal physi-
ology, prevent atrophy of gut villi, reduce intestinal permeability, 
protect against ischemia-reperfusion injury by stimulating intesti-
nal perfusion, and preserve the gut immunity by affecting gut-asso-
ciated lymphoid tissue [52]. However, the initiation of enteral nu-
trition should be started carefully considering enteral nutrition-de-
rived complication, gut function, and contractility (e.g., ESICM 
WGAP recommendations) [53]. 

Several researchers have proposed that delayed trophic feeding 
(after 72 hours from intensive stress) is the optimal choice for criti-
cally ill patients with AGI, although this lacks evidence. As a pro-
tective strategy, trophic feeding may reduce the gut burden, help to 
maintain the intestinal physiology, prevent mucosal atrophy, and 
maintain the gut integrity in critically ill patients [54]. However, 
frequently providing enteral nutrition might have several complica-
tions, including vomiting, diarrhea, GI bleeding, aspiration pneu-
monia, refeeding syndrome, and gut ischemia [55,56]. In critically 
ill patients, enteral nutrition-related complications have been fre-
quently observed [57]. 

According to surviving sepsis guidelines, enteral nutrition is rec-
ommended as soon as possible [58]. However, the tool for identi-
fying patients who are likely to benefit from enteral nutrition 
among those who are critically ill with AGI and nutrition support 
protocol for decreasing enteral nutrition-related complications 
show poor performances [53]. 

The microbiome approach such as the use of probiotics, fecal 
microbial transplantation (FMT), and selective decontamination 
of the digestive tract has been suggested [3]. However, its evidence 
is not of high quality. Theoretically, the microbiome treatment will 
increase the number of “health-promoting” bacteria and decrease 
that of the “disease-promoting” bacteria. A microbiome treatment 
involves administering probiotics. Although significant evidence is 
not yet obtained, meta-analyses have demonstrated that ventila-
tor-associated pneumonia improves following the administration 
of probiotics [59]. FMT involves the administration of an entire 
microbiome from a healthy donor and is considered for Clostridi-
um difficile infections. Critically ill patients frequently receive anti-
biotics, and their microbiome is expected to alter due to antibiotic 
therapy. Therefore, FMT may be considered during critical illness-
es [3]. However, the current evidence about microbiota-related 
therapies in critical illness remains unclear and limited to preclini-
cal settings [40]. 

To promote rapid hypertrophy of the small bowel, several com-
pounds have been reported, including epidermal growth factor, 
membrane permeant inhibitor of myosin light chain kinase, mucus 
surrogate, pharmacologic vagus nerve agonist, immune-enhancing 
diet, and glucagon-like peptide-2 as preclinical strategies [60-64]. 
However, the evidence remains unclear. Immune-enhancing nutri-
ents (e.g., glutamine, alanine) can stimulate the enteric blood flow, 
maintain the mucosal barrier function by preserving tight-junction 
integrity, and induce the production and release of mucosal Ig and 
critical endogenous growth factors [6] (Table 2). 

Conclusion 

In critical illness, the gut is susceptible to injury due to multifactori-
al causes. No treatment modality exists to significantly enhance the 
gut barrier. Although current evidence is not of high quality, the 

Table 2. Various materials to improve gut barrier and immunity

Material Effect
Epidermal growth factor [60] Improve gut apoptosis, proliferation, and permeability
Glucagon-like peptide-2 [61] Promote sufficient gut hypertrophy
Membrane permeant inhibitor of myosin light chain kinase [62] Improve intestinal permeability
Mucus surrogate [63] Prevent trauma/hemorrhagic shock-induced gut injury
Pharmacologic vagus nerve agonist [64] Attenuate toxic mesenteric lymph-induced lung injury
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enteral feed is associated with an increased gut barrier. Therefore 
microbiome treatment has been suggested. Additionally, in our re-
view of the various studies, we concisely compiled the most up-to-
date knowledge, on gut injury mechanisms and protection of the 
gut during critical illness. Further investigations should be per-
formed with respect to the treatment of gut damage during critical 
illness. 
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