• Title/Summary/Keyword: interval time

Search Result 3,736, Processing Time 0.035 seconds

Efficient Packet Transmission Method for Fast Data Dissemination in Senor Node (센서노드에서의 빠른 데이터 전달을 위한 효율적 패킷 전송 기법)

  • Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.235-243
    • /
    • 2007
  • Sensor network is used to obtain sensing data in various area. The interval to sense the events depends on the type of target application and the amounts of data generated by sensor nodes are not constant. Many applications exploit long sensing interval to enhance the life time of network but there are specific applications that requires very short interval to obtain fine-grained, high-precision sensing data. If the number of nodes in the network is increased and the interval to sense data is shortened, the amounts of generated data are greatly increased and this leads to increased amount of packets to transfer to the network. To transfer large amount of packets fast, it is necessary that the delay between successive packet transmissions should be minimized as possible. In Sensor network, since the Operating Systems are worked on the event driven, the Timer Event is used to transfer packets successively. However, since the transferring time of packet completely is varies very much, it is very hard to set appropriate interval. The longer the interval, the higher the delay and the shorter the delay, the larger the fail of transfer request. In this paper, we propose ESTEO which reduces the delay between successive packet transmissions by using SendDone Event which informs that a packet transmission has been completed.In ESTEO, the delay between successive packet transmissions is shortened very much since the transmission of next packet starts at the time when the transmission of previous packet has completed, irrespective of the transmission timee. Therefore ESTEO could provide high packet transmission rate given large amount of packets.

  • PDF

Comparison of two sampling intervals and three sampling intervals VSI charts for monitoring both means and variances

  • Chang, Duk-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.997-1006
    • /
    • 2015
  • In industrial quality control, when engineers use VSI control procedure they should consider both required time to signal and switching behaviors together in the case of production process changed. Up to the present, many researchers have studied fixed sampling interval (FSI) chart and variable sampling interval (VSI) chart in the points of average number of samples to signal (ANSS) and average time to signal (ATS). However, ANSS and ATS do not provide any switching information between different sampling intervals of VSI schemes. In this study, performances of two sampling intervals VSI chart and three sampling intervals VSI chart are evaluated and compared. The numerical results show that ANSS and ATS values of two sampling intervals VSI chart and three sampling interval VSI chart are similar regardless the amount of shifts. However, the values of switching behaviors including ANSW are less efficient in three sampling intervals VSI charts than in two sampling intervals VSI chart.

Delay-dependent Stability Criteria for Uncertain Stochastic Neural Networks with Interval Time-varying Delays (구간 시변 지연이 존재하는 불확실 확률적 뉴럴 네트웍의 지연의존 안전성 판별법)

  • Kwon, Oh-Min;Park, Ju-Hyun;Lee, Sang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2066-2073
    • /
    • 2008
  • In this paper, the problem of global asymptotic stability of uncertain stochastic neural networks with delay is considered. The delay is assumed to be time-varying and belong to a given interval. Based on the Lyapunov stability theory, new delay-dependent stability criteria for the system is derived in terms of LMI(linear matrix inequality). Three numerical examples are given to show the effectiveness of proposed method.

Synchronization of Chaotic Secure Communication Systems with Interval Time-varying Delays (구간 시변 지연이 존재하는 카오스 보안 통신시스템의 동기화)

  • Kwon, Oh-Min;Park, Ju-Hyun;Lee, Sang-Moon;Park, Myeong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1215-1222
    • /
    • 2009
  • In this paper, a method of designing a controller which ensures the synchronization between the transmission and the reception ends of chaotic secure communication systems with interval time-varying delays is proposed. To increase communication security, the transmitted message is encrypted with the techniques of N-shift cipher and public key. And to reduce the conservatism of the stabilization criterion for error dynamic system obtained from the transmitter and receiver, a new Lyapunov-functional and bounding technique are proposed. Through a numerical example, the effectiveness of the proposed method is shown in the chaotic secure communication system.

Novel Results for Global Exponential Stability of Uncertain Systems with Interval Time-varying Delay

  • Liu, Yajuan;Lee, Sang-Moon;Kwon, Oh-Min;Park, Ju H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1542-1550
    • /
    • 2013
  • This paper presents new results on delay-dependent global exponential stability for uncertain linear systems with interval time-varying delay. Based on Lyapunov-Krasovskii functional approach, some novel delay-dependent stability criteria are derived in terms of linear matrix inequalities (LMIs) involving the minimum and maximum delay bounds. By using delay-partitioning method and the lower bound lemma, less conservative results are obtained with fewer decision variables than the existing ones. Numerical examples are given to illustrate the usefulness and effectiveness of the proposed method.

Design of Optimized Interval Type-2 Fuzzy Controller and Its Application (최적 Interval Type-2 퍼지 제어기 설계 및 응용)

  • Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1624-1632
    • /
    • 2009
  • In this study, we introduce the design methodology of an optimized Interval Type-2 fuzzy controller. The fixed MF design of type-1 based FLC leads to the difficulty of rule-based control design for representing the linguistically uncertain expression. In the Type-2 FLC as the expanded type of Type-1 FLC, we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. Type-2 FLC has a robust characteristic in the unknown system with unspecific noise when compared with Type-1 FLC. Through computer simulation as well as practical experiment, we compare their performance by applying both the optimized Type-1 and Type-2 fuzzy cascade controllers to ball and beam system. To evaluate each controller performance, we consider controller characteristic parameters such as maximum overshoot, delay time, rise time, settling time and steady-state error.

Optimal Interval Censoring Design for Reliability Prediction of Electronic Packages (전자패키지 신뢰성 예측을 위한 최적 구간중도절단 시험 설계)

  • Kwon, Daeil;Shin, Insun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.1-4
    • /
    • 2015
  • Qualification includes all activities to demonstrate that a product meets and exceeds the reliability goals. Manufacturers need to spend time and resources for the qualification processes under the pressure of reducing time to market, as well as offering a competitive price. Failure to qualify a product could result in economic loss such as warranty and recall claims and the manufacturer could lose the reputation in the market. In order to provide valid and reliable qualification results, manufacturers are required to make extra effort based on the operational and environmental characteristics of the product. This paper discusses optimal interval censoring design for reliability prediction of electronic packages under limited time and resources. This design should provide more accurate assessment of package capability and thus deliver better reliability prediction.

Consensus Control for Switched Multi-agent Systems with Interval Time-varying Delays (구간 시변 지연을 고려한 전환 멀티-에이전트 시스템에 대한 일치 제어)

  • Park, M.J.;Kwon, O.M.;Lee, S.M.;Park, Ju-H.;Cha, E.J.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.401-406
    • /
    • 2012
  • This paper considers multi-agent systems with interval time-varying delays and switching interconnection topology. By construction of a suitable Lyapunov-Krasovskii's functional, new delay-dependent consensus control conditions for the systems are established in terms of LMIs (Linear Matrix Inequalities) which can be easily solved by various effective optimization algorithms. One numerical example is given to illustrate the effectiveness of the proposed methods.

Parametric Analysis of Digital Particle Holography for Spray Droplets (분무 액적을 위한 디지털 입자 홀로그래피의 파라미터 해석)

  • Yang, Yan;Kang, Bo-Seon
    • Journal of ILASS-Korea
    • /
    • v.12 no.4
    • /
    • pp.191-197
    • /
    • 2007
  • This study presents in-line digital particle holography and its application to spray droplets to measure the characteristics of spray droplets. Several important parameters at the time of hologram recording such as the object distance and the region of laser beam used were verified. The correlation coefficient method with important parameters such as the reconstruction interval and the correlation interval was used for determination of the focal planes of particles. The optimal values of all these parameters are obtained by either numerical simulation of holograms or experiments. Using these optimal parameters, double pulse digital spray holograms in a short time interval were recorded with the synchronization system for the time control. The spatial positions of droplets that are used for the evaluation of the three dimensional droplet velocities can be easily located, which proves the feasibility of the digital holographic technology for measurements of several important features of spray droplets.

  • PDF

A Differential Current-to-Time Interval Converter Using Current-Tunable Schmitt Triggers

  • Chung, Won-Sup
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.375-380
    • /
    • 2017
  • A differential current-to-time interval converter is presented for current mode sensors. It consists of a ramp voltage generator, a current mode sensor, a reference current source, two current-tunable Schmitt triggers, a one-shot multivibrator, and two logic gates. The design principle is to apply a ramp voltage to each input of the two current-tunable Schmitt triggers whose threshold voltages are proportional to the drain current values of the current mode sensors. A proposed circuit converts a current change in the ISFET biosensor into its equivalent pulse width change. A prototype circuit built using TSMC 0.18 nm CMOS process exhibit a conversion sensitivity amounting to $726.9{\mu}s/pH$ over pH variation range of 2-12 and a linearity error less than ${\pm}0.05%$.