• Title/Summary/Keyword: interval scanning

Search Result 103, Processing Time 0.021 seconds

Accuracy Estimation of Laser scanning Mobile Mapping System using Lynx Mobile Mapper (Lynx Mobile Mapper를 이용한 레이저스캐너 기반 차량 MMS의 정확도 평가)

  • Jeong, Tae-Jun;Yun, Hong-Sic;Hwang, Jin-Sang;Kim, Yong-Hyun;Wi, Gwang-Jae;Lee, Ha-Jun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.69-71
    • /
    • 2010
  • In this paper, we focus on the accuracy estimation of laser scanning mobile mapping system using Lynx Mobile Mapper. For this, we surveyed checkpoints(181 points) in study areas. A method to estimate the accuracy of laser scanning mobile mapping system based on the measurement range, interval of control points and gps signal environments. As a result, to ensure reliable measurement results, we must be made a plan considering Measure range(60m or under) and operation. The estimation results showed the need for improving accuracy using control points about 150m interval according to environment error source.

  • PDF

Power Efficient Network Scanning Algorithm Based on IEEE 802.11k-Measurement Pilot (IEEE 802.11k-Measurement Pilot을 활용한 저전력 네트워크 스캐닝 알고리즘)

  • Lee, Hyung Kyu;Kim, Hwangnam;Kim, Hyunsoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.6
    • /
    • pp.482-489
    • /
    • 2014
  • This paper suggests the new network scanning algorithm that makes use of measurement pilot of IEEE 802.11k. The purpose of suggesting this algorithm is to improve the existing network scanning schemes. After introducing new algorithm, this paper shows the difference of time property and energy property between former scanning schemes and new scheme with simulation results. Passive scan has a merit of low-power consumption but it takes too long time to fulfill whole scanning. On the contrary, an advantage of active scan is speed but it consumes more battery power than passive scan. By using measurement pilot's smaller interval than beacon interval, the suggested algorithm can consume less power than active scan does, and also make shorter scanning delay than passive scan does.

Interval Scan Inspection Technique for Contact Failure of Advanced DRAM Process using Electron Beam-Inspection System

  • Oh, J.H.;Kwon, G.;Mun, D.Y.;Kim, D.J.;Han, I.K.;Yoo, H.W.;Jo, J.C.;Ominami, Y.;Ninomiya, T.;Nozoe, M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • We have developed a highly sensitive inspection technique based on an electron beam inspection for detecting the contact failure of a poly-Si plugged layer. It was difficult to distinguish the contact failure from normal landing plugs with high impedance. Normally, the thermal annealing method has been used to decrease the impedance of poly-Si plugs and this method increases the difference of charged characteristics and voltage contrast. However, the additional process made the loss of time and broke down the device characteristics. Here, the interval scanning method without thermal annealing was effectively applied to enhance the difference of surface voltage between well-contacted poly-Si plugs and incomplete contact plugs. It is extremely useful to detect the contact failures of non-annealed plug contacts with high impedance.

Study on Slice Sensitivity Profile and Reconstruction Resolution on Helical CT System (Helical CT 시스템에 있어 Slice Sensitivity Profile과 Reconstruction Resolution에 관한 연구)

  • Yoon, Han-Sik
    • Journal of radiological science and technology
    • /
    • v.20 no.1
    • /
    • pp.15-20
    • /
    • 1997
  • Unlike conventional CT scan, the helical CT scan uses continuous rotating CT equipment with a slip ring to move the patient's coach at a constant speed while continuously scanning. Slice sensitivity profiles in the Z-position(SSPz) using the conventional X-ray CT have a shape similiar to a rectangular wave, which slightly spreads out into plains below the mountain. However, in the helical CT, with an expansion of the base, the rectangular shape collapses and a mouatain-like shape can be seen. We need to investigate the fellowing factors in helical CT scanning;the ability to scan along the axis of the body, effective slice width, slice shape and the precision of coach velocity, Helical scanning with sprial X-ray track is different from the conventional scanning in terms of the principle of image reconstruction performed. We believe that the problems in helical scanning can be solved by understanding new the special parameters such as the bed moving speed and the interval of image reconstruction.

  • PDF

Using Field Programmable Gate Array Hardware for the Performance Improvement of Ultrasonic Wave Propagation Imaging System

  • Shan, Jaffry Syed;Abbas, Syed Haider;Kang, Donghoon;Lee, Jungryul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.6
    • /
    • pp.389-397
    • /
    • 2015
  • Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of $100{\times}100mm^2$ with 0.5 mm interval) to 87.5% (scanning of $200{\times}200mm^2$ with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection.

System Development and Field Application for Measuring installation Interval and Height of Road safety Facilities Using a tine Scanning Camera (라인스캔 카메라를 이용한 도로 안전시설 설치간격 및 높이측정 시스템 개발 및 현장적용)

  • Moon, Hyung-Chul;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.231-237
    • /
    • 2008
  • One of the basic requirements for the most advanced countries would be the well-planned traffic infrastructures. For such traffic safety systems, foreign countries follow the current tendency to which they manage the traffic facilities and equipments based on the objective assessment for the state of every traffic safety facility in terms of Asset Management(AM). As the road safety facilities related among them are very diverse, and their functions are very important as well, the regulations and directions for installing them are enacted. However, despite the standards and directions for the installations, sometimes, the facilities are not installed in accordance with the standards, not only causing inconvenience to the users but also negatively affecting the safety for them. In the study, for the facilities in which the installation interval and height are standardized according to the designed speed and geometrical structure of the road among the various road safety facilities, the image analysis model capable of measuring them with a line scanning camera was developed. In addition, the program systematically analyzing this was also developed and applied to the field and, as the result of that, the size and installation interval of the facilities could be measured fast and accurately.

  • PDF

High-speed angular-scan pulse-echo ultrasonic propagation imager for in situ non-destructive evaluation

  • Abbas, Syed H.;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.223-230
    • /
    • 2018
  • This study examines a non-contact laser scanning-based ultrasound system, called an angular scan pulse-echo ultrasonic propagation imager (A-PE-UPI), that uses coincided laser beams for ultrasonic sensing and generation. A laser Doppler vibrometer is used for sensing, while a diode pumped solid state (DPSS) Q-switched laser is used for generation of thermoelastic waves. A high-speed raster scanning of up to 10-kHz is achieved using a galvano-motorized mirror scanner that allows for coincided sensing and for the generation beam to perform two-dimensional scanning without causing any harm to the surface under inspection. This process allows for the visualization of longitudinal wave propagation through-the-thickness. A pulse-echo ultrasonic wave propagation imaging algorithm (PE-UWPI) is used for on-the-fly damage visualization of the structure. The presented system is very effective for high-speed, localized, non-contact, and non-destructive inspection of aerospace structures. The system is tested on an aluminum honeycomb sandwich with disbonds and a carbon fiber-reinforced plastic (CFRP) honeycomb sandwich with a layer overlap. Inspection is performed at a 10-kHz scanning speed that takes 16 seconds to scan a $100{\times}100mm^2$ area with a scan interval of 0.25 mm. Finally, a comparison is presented between angular-scanning and a linear-scanning-based pulse-echo UPI system. The results show that the proposed system can successfully visualize defects in the inspected specimens.

Real Time Linux System Design (리얼 타임 리눅스 시스템 설계)

  • Lee, Ah Ri;Hong, Seon Hack
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.13-20
    • /
    • 2014
  • In this paper, we implemented the object scanning with nxtOSEK which is an open source platform. nxtOSEK consists of device driver of leJOS NXJ C/Assembly source code, TOPPERS/ATK(Automotive real time Kernel) and TOPPERS/JSP Real-Time Operating System source code that includes ARM7 specific porting part, and glue code make them work together. nxtOSEK can provide ANSI C by using GCC tool chain and C API and apply for real-time multi tasking features. We experimented the 3D scanning with ultra sonic and laser sensor which are made directly by laser module diode and experimented the measurement of scanning the object by knowing x, y, and z coordinates for every points that it scans. In this paper, the laser module is the dimension of $6{\times}10[mm]$ requiring 5volts/5[mW], and used the laser light of wavelength in the 650[nm] range. For detecting the object, we used the beacon detection algorithm and as the laser light swept the objects, the photodiode monitored the ambient light at interval of 10[ms] which is called a real time. We communicated the 3D scanning platform via bluetooth protocol with host platform and the results are displayed via DPlot graphic tool. And therefore we enhanced the functionality of the 3D scanner for identifying the image scanning with laser sensor modules compared to ultra sonic sensor.

A Technique to Improve the Readability of Ancient Inscription by Using Optical Triangulation Measurement Principle (광삼각법 측정 원리를 이용한 금석문 가독성 향상 방법)

  • Lee, Geun-Ho;Ko, Sun-Woo;Choi, Won-Ho
    • Journal of Information Technology Services
    • /
    • v.11 no.sup
    • /
    • pp.103-111
    • /
    • 2012
  • In epigraph field to study ancient scripts, alternative readability improvement technologies have been developed to replace existing rubbing method which has low resolution and causes surface pollution of heritages from the viewpoints of extraction process and used materials. Recently many methods which are based on analysis of pixel data for extracting outlines of the specific image have been developed with advancement of image processing techniques. But these methods are not applicable and the results are not satisfied in the damaged inscriptions which are weathered by wind and rain for a long time and in the narrowed one. In this paper laser scanning techniques which uses optical triangulation measurement principle are developed to minimize scanning error. The proposed techniques are consisted of 3 parts:(1) the understanding of optical triangulation measurement principle to find scanning guideline (2) determinations of points interval, scanning distance and scanning angle to guarantee scanning data quality (3) identification of valid point data area which will be used in registration process. The proposed character identification method contributed in decoding an ancient inscription on SeukBingGo in Kyungju.

Measurement of surface plasmon using near-field scanning optical microscope (근접장 주사 광학 현미경을 이용한 표면 플라즈몬의 측정)

  • 고선아;이관수;박승룡;윤재웅;송석호;김필수;오차환
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.51-55
    • /
    • 2004
  • Surface plasmons (SPs) are charge density oscillations that propagate along an interface between a dielectric and metal. In this paper, the electric field of SPs and the intereference of two SPs are observed by using Near-field Scanning Optical Microscope (NSOM). The excitation condition of SPs is changed as the optical tip approaches the metal surface, because the excitation condition of SPs is very sensitive to surface structures. To measure the microscope field of SPs, the distance between metal surface and optical tip must contain a specific interval.