• 제목/요약/키워드: interpolating

검색결과 298건 처리시간 0.025초

회전하는 보의 유한요소해석을 위한 유리형상함수의 확장 (Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams)

  • 김용우;정재호
    • 한국소음진동공학회논문집
    • /
    • 제19권6호
    • /
    • pp.591-598
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfy the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfy the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beams.

전달손실 최대화를 위한 위상최적화기반 1차원 흡차음시스템의 최적 배열 설계 (Optimal sequencing of 1D acoustic system for sound transmission loss maximization using topology optimization method)

  • 김은일;이중석;김윤영;김정수;강연준
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.309-314
    • /
    • 2007
  • Optimal layer sequencing of a multi-layered acoustical foam is solved to maximize its sound transmission loss. A foam consisting of air and poroelastic layers can be optimized when a limited amount of a poroelastic material is allowed. By formulating the sound transmission loss maximization problem as a one dimensional topology optimization problem, optimal layer sequencing and thickness were systematically found for several frequencies. For optimization, the transmission losses of air and poroelastic layers were calculated by the transfer matrix derived from Biot's theory. By interpolating five intrinsic parameters among several poroelastic material parameters, dear air-poroelastic layer distributions were obtained; no filtering or post-processing was necessary. The optimized foam layouts by the proposed method were shown to differ depending on the frequency of interest.

  • PDF

국내 수평면 전일사량과 운량 분석 (Analysis of of Horizontal Global Radiation and Cloud Cover in Korea)

  • 조덕기;윤창열;김광득;강용혁
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.124-129
    • /
    • 2011
  • Since the horizontal global radiation and cloud cover are a main factor for designing any solar energy system, it is necessary to evaluate its characteristics all over the country. The work presented here are the investigation of horizontal global radiation and cloud cover in Korea. The data utilized in the investigation consist of horizontal global radiation and cloud cover collected for 27 years(1982.12~2008.12) at measuring stations across the country. The analysis shows that the annual-average daily horizontal global radiation is $3.61kWh/m^2$ and the annual-average daily cloud cover is 5.1 in Korea. We also constructed the contour map of cloud cover in Korea by interpolating actually measured data across the country.

  • PDF

세방향 필터 접근법에 기반한 새로운 디모자익싱 기법 (A new demosaicing method based on trilateral filter approach)

  • 김태권;김기윤
    • 디지털산업정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.155-164
    • /
    • 2015
  • In this paper, we propose a new color interpolation method based on trilateral filter approach, which not only preserve the high-frequency components(image edge) while interpolating the missing raw data of color image(bayer data pattern), but also immune to the image noise components and better preserve the detail of the low-frequency components. The method is the trilateral filter approach applying a gradient to the low frequency components of the image signal in order to preserve the high-frequency components and the detail of the low-frequency components through the measure of the freedom of similarity among adjacent pixels. And also we perform Gaussian smoothing to the interpolated image data in order to robust to the noise. In this paper, we compare the conventional demosaicing algorithm and the proposed algorithm using 10 test images in terms of hue MAD, saturation MAD and CPSNR for the objective evaluation, and verify the performance of the proposed algorithm.

시공간 정보를 이용한 움직임 기반의 De-interlacing 기법 (A Motion-Adaptive De-interlacing Method using Temporal and Spatial Domain Information)

  • 심세훈;김용하;정제창
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.9-12
    • /
    • 2002
  • In this Paper, we propose an efficient de-interlacing algorithm using temporal and spatial domain information. In the proposed scheme, motion estimation is performed same parity fields, i.e., if current field is even field, reference fields are previous even field and forward even field. And then motion vector refinement is performed to improve the accuracy of motion vectors. In the interpolating step, we use median filter to reduce the interpolation error caused by incorrect motion vector. Simulations conducted for various video sequences have shown the efficiency of the proposed interpolator with significant improvement over previous methods in terms of both PSNR and perceived image quality.

  • PDF

실시간 휴먼 시뮬레이션을 위한 깊이 카메라 기반의 자세 판별 및 모션 보간 (Depth Camera-Based Posture Discrimination and Motion Interpolation for Real-Time Human Simulation)

  • 이진원;한정호;양정삼
    • 한국CDE학회논문집
    • /
    • 제19권1호
    • /
    • pp.68-79
    • /
    • 2014
  • Human model simulation has been widely used in various industrial areas such as ergonomic design, product evaluation and characteristic analysis of work-related musculoskeletal disorders. However, the process of building digital human models and capturing their behaviors requires many costly and time-consuming fabrication iterations. To overcome the limitations of this expensive and time-consuming process, many studies have recently presented a markerless motion capture approach that reconstructs the time-varying skeletal motions from optical devices. However, the drawback of the markerless motion capture approach is that the phenomenon of occlusion of motion data occurs in real-time human simulation. In this study, we propose a systematic method of discriminating missing or inaccurate motion data due to motion occlusion and interpolating a sequence of motion frames captured by a markerless depth camera.

전기기기의 최적설계를 위한 유한요소모델의 설계변수 매개화 (Design Variable Parametrization in Finite Element Models for Optimal Design of Electromagnetic Devices)

  • 김창현;김창욱;박일한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 A
    • /
    • pp.146-148
    • /
    • 1998
  • For the shape design of electromagnetic devices using the FEM, the choice of design parameters influence to the success of the optimization process. If the design parameter distribution has a one to one corespondence with finite element model, we can encounter not only serious accuracy problem but also obtain a zigzag shape along the interface. The nodes between those design parameters can be parameterized by interpolating using one among many interpolation methods. The conventional parameterization of design parameters has a limit of application for shape, because design parameters and movable nodes are linearly intepolated. In this paper, using the B-spline curve that use to present any interfaces in computer graphics, the curvilinear parameterization between design parameters and node points is compared with the linear parameterization.

  • PDF

Finite strip analysis of multi-span box girder bridges by using non-periodic B-spline interpolation

  • Choi, C.K.;Hong, H.S.
    • Structural Engineering and Mechanics
    • /
    • 제12권3호
    • /
    • pp.313-328
    • /
    • 2001
  • A multi-span bridge has the peak value of resultant girder moment or membrane stress at the interior support. In this paper, the spline finite strip method (FSM) is modified to obtain the more appropriate solution at the interior support where the peak values of solution exist. The modification has been achieved by expressing the shape function with non-periodic B-splines which have multiple knots at the boundary. The modified B-splines have the useful feature for interpolating the curve with sudden change in curvature. Moreover, the modified spline FSM is very efficient in analyzing multi-span box girder bridges, since a bridge can be modeled by an assembly of strips extended along the entire bridge length. Numerical examples of the bridge analysis have been performed to verify the efficiency and accuracy of the new spline FSM.

지하철 사고 감시를 위한 스테레오 비디오 부호화 기법 (Stereoscopic Video Coding for Subway Accident Monitoring System)

  • 김길동;박성혁;이한민;오세찬
    • 한국철도학회논문집
    • /
    • 제8권6호
    • /
    • pp.559-565
    • /
    • 2005
  • In this paper, we propose a stereoscopic video coding scheme for subway accident monitoring system. The proposed designed for providing flexible video among various displays, such ass control center, station employees and train driver. We uses MPEG-2 standard for coding the left-view sequence and IBMDC coding scheme predicts matching block by interpolating both motion and disparity predicted macroblocks. To provide efficient stereoscopic video service, we define both temporally and spatially scalable layers for each eye's-view by using the concept of Spatio-Temporal scalability. The experimental results show the efficiency of proposed coding scheme by comparison with already known methods and the advantages of disparity estimation in terms of scalability overhead. According to the experimental results, we expect the proposed functionalities will play a key role in establishing highly flexible stereoscopic video codec for ubiquitous display environment where devices and network connections are heterogeneous.

Macromodel for Short Circuit Power and Propagation Delay Estimation of CMOS Circuits

  • Jung, Seung-Ho;Baek, Jong-Humn;Kim, Seok-Yoon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.1005-1008
    • /
    • 2000
  • This paper presents a simple method to estimate short-circuit power dissipation and propagation delay for static CMOS logic circuits. Short-circuit current expression is derived by accurately interpolating peak points of actual current curves which is influenced by the gate-to-drain coupling capacitance. The macro model and its expressions estimating the delay of CMOS circuits, which is based on the current modeling expression, are also proposed after investigating the voltage waveforms at transistor output modes. It is shown through simulations that the proposed technique yields better accuracy than previous methods when signal transition time and/or load capacitance decreases, which is a characteristic of the present technological evolution.

  • PDF