• Title/Summary/Keyword: internal structure imaging

Search Result 69, Processing Time 0.024 seconds

Coating defect classification method for steel structures with vision-thermography imaging and zero-shot learning

  • Jun Lee;Kiyoung Kim;Hyeonjin Kim;Hoon Sohn
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.55-64
    • /
    • 2024
  • This paper proposes a fusion imaging-based coating-defect classification method for steel structures that uses zero-shot learning. In the proposed method, a halogen lamp generates heat energy on the coating surface of a steel structure, and the resulting heat responses are measured by an infrared (IR) camera, while photos of the coating surface are captured by a charge-coupled device (CCD) camera. The measured heat responses and visual images are then analyzed using zero-shot learning to classify the coating defects, and the estimated coating defects are visualized throughout the inspection surface of the steel structure. In contrast to older approaches to coating-defect classification that relied on visual inspection and were limited to surface defects, and older artificial neural network (ANN)-based methods that required large amounts of data for training and validation, the proposed method accurately classifies both internal and external defects and can classify coating defects for unobserved classes that are not included in the training. Additionally, the proposed model easily learns about additional classifying conditions, making it simple to add classes for problems of interest and field application. Based on the results of validation via field testing, the defect-type classification performance is improved 22.7% of accuracy by fusing visual and thermal imaging compared to using only a visual dataset. Furthermore, the classification accuracy of the proposed method on a test dataset with only trained classes is validated to be 100%. With word-embedding vectors for the labels of untrained classes, the classification accuracy of the proposed method is 86.4%.

Evaluation of Internal Structure of Beef Using Magnetic Resonance Imaging (자기공명영상을 이용한 소고기의 내부 구조 평가)

  • Kim, S. M.
    • Journal of Biosystems Engineering
    • /
    • v.24 no.6
    • /
    • pp.531-538
    • /
    • 1999
  • 비파괴 품질 평가 기술인 핵 자기공명 분광법과 자기공명영상을 이용하여 소고기의 내부 구조를 분석하였다. 이완 상수 T$_1$과 T$_2$가 육류의 내부 구조와 관계가 있음을 보였다. 근육부분의 면적 비율이 증가할수록 T$_1$이 증가했다. 지방 부분의 T$_2$는 배 내부 부분의 T$_2$와 비슷한 값을 보였다. 자기공명 영상을 이용하여 육류의 원하는 부위의 T$_2$를 측정할 수 있는 방법을 구하였다. 근육 부분의 T$_2$가 길었으며 지방 부분의T$_2$가 짧았다. 부위별로 최적의 신호를 얻을 수 있는 자기공명영상 인자 TR과 TE를 구하였다. 자기공명영상을 이용하여 근육, 지방 그리고 뼈 성분에 따른 육류의 품질을 비파괴적으로 평가할 수 있는 가능성을 보여주었다.

  • PDF

Research of 3D Information processing for Robot Surgery (로봇 수술을 위한 3차원 구조계산의 필요성 조사)

  • Jung, Jae-Eun;Choi, Seok-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.1
    • /
    • pp.43-50
    • /
    • 2009
  • Geometry calculation Using Abdominal internal organ image from traditional laparoscopy or robotic surgery system we can make depth informations through measured 3D structure informations is very helpful to doctors, depth information is mare useful then others that use traditional laparoscopy or robotic surgery system to many doctors. however, traditional method are incomplete. less experienced doctors make much mare prohability of mistake. Hence, 3D information of organ is very helpful to the less experienced doctors. it will be greate role of reducing medical accidents and surgical time. We can get 3D informations using geometrical calculation method in robotic surgical system. also suggested method is needed in traditional surgical method without the need to create a new system, finally, We can get 3D information from traditional system without any new system, it take advantage in cost and create high efficiency. mare information will provided to many doctors.

  • PDF

A STUDY ON TEMPOROMANDIBULAR JOINT DYSFUNCTION WITH MAGNETIC RESONANCE IMAGING AND ARTHROGRAM (자기 공명 영상장치를 이용한 악관절 기능 장애에 관한 연구)

  • Kim Jae-Duk
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.23 no.1
    • /
    • pp.7-14
    • /
    • 1993
  • The Internal derangement of temporomandibular joint disc was evaluated by using magnetic resonance imaging and arthrogram in 5 patients having reciprocal clicking or locking and in 5 normal subjects. Parasagittal multisections on both closed and open mouth were serially obtained by using a 1.5 Tesla MR system and surface coil with CSMEMP, MPGR. MR images obtained were analized by correlating with images of arthrograms. The obtained results were as follows: 1. Displaced meniscus was clearly delineated as dark structure on MR images other than on arthrograms of closed mouth view of patient having clicking or locking. 2. The deltoid white images of synovial fluid were identified in the glenoid fossa and on the posterior surface of condyle on open mouth view and partly depicted on closed mouth view, of parasagittal sections by MPGR. 3. The greyish image of joint fluid was identified on the posterior surface of condyle on the open mouth view of parasagittal sections by CSMEMP. 4. The structural relationship among condyle, meniscus, and fluid showed the variety of images on each parasagitta1 view.

  • PDF

Structural Analysis of Exosomes Using Different Types of Electron Microscopy

  • Choi, Hyosun;Mun, Ji Young
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.171-175
    • /
    • 2017
  • Negative staining has been traditionally used for exosome imaging; however, the technique is limited to surface topology only and can cause staining artifacts. Therefore, to analyze the internal structure of exosomes, we employed a method of block preparation, thin sectioning, and electron tomography. In addition, an automatic serial sectioning technique with 15-nm thickness through focused ion beam was employed to observe the three-dimensional structure of exosomes of various sizes. Cryo-transmission electron microscopy revealed the near-to-native structure of exosomes.

Defect Detection of Impacted Composite Tubes by Lock-in Photo-Infrared Thermography Technique (위상잠금 열화상기법을 이용한 복합재 튜브 충격 손상 결함 측정)

  • Kim, Kyoung-Suk;Jeon, So-Young;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.139-143
    • /
    • 2011
  • The problem of delamination of composite tubes by impact has been acknowledged in aerospace and automobile industry. Non-destructive testing(NDT) methods in composite material structure are important to evaluate reliability of composite structure. There are many kinds of NDT methods which can detect the inside defect of the composite material such as Infrared Thermography(IRT). Infrared thermal imaging of object is different from that of a defect, in heated composite tubes with an internal defect, and then location and size of a defect can be measured by the analysis of thermal imaging pattern. In this study, Lock-in Infrared thermography detect internal defects of Impacted composite tubes by the inspection of infrared lay radiated from the surface of composite tubes.

X-ray Micro-imaging of Arsenic Absorption of Sap Flow in Xylem Vessels of Pteris (X-ray 영상기법을 이용한 비소 흡수가 고사리 내부 수액 거동에 미치는 영향 연구)

  • Lee, Jin-Pyoung;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.5 no.1
    • /
    • pp.30-36
    • /
    • 2007
  • The global environment is deteriorating at an alarming rate, despite of enhanced international environmental regulation. Many studies have been performed to reduce toxic pollutants. Recently, plant-based phytoremediation technology for moving toxic contaminants from soil and water has been receiving large attention. Arsenic-contaminated soil is one of the major pollutant sources for drinking water. Pteris erotica has been known as a hyper-accumulator of arsenic from soils. In this study, we investigated the effect of arsenic absorption on sap flow inside xylem vessels of Pteris. The synchrotron X-ray micro-imaging technique was employed to monitor the refilling process of water containing arsenic inside the xylem vessels of Pteris's leaves and stems non-invasively. The captured phase-contrast X-ray images show both anatomy of internal structure and transport of water inside Pteris. The exposure of Pteris to arsenic solution was found to increase largely the water raise speed in xylem vessels. The present results would provide important information needed for understanding the mechanisms of accumulation and transportation of toxic materials in plants.

Micro-computed tomography in preventive and restorative dental research: A review

  • Ghavami-Lahiji, Mehrsima;Davalloo, Reza Tayefeh;Tajziehchi, Gelareh;Shams, Paria
    • Imaging Science in Dentistry
    • /
    • v.51 no.4
    • /
    • pp.341-350
    • /
    • 2021
  • Purpose: The use of micro-computed tomography (micro-CT) scans in biomedical and dental research is growing rapidly. This study aimed to explore the scientific literature on approaches and applications of micro-CT in restorative dentistry. Materials and Methods: An electronic search of publications from January 2009 to March 2021 was conducted using ScienceDirect, PubMed, and Google Scholar. The search included only English-language articles. Therefore, only studies that addressed recent advances and the potential uses of micro-CT in restorative and preventive dentistry were selected. Results: Micro-CT is a tool that enables 3-dimensional imaging on a small scale with very high resolution. In this method, there is no need for sample preparation or slicing. Therefore, it is possible to examine the internal structure of tissue and the internal adaptation of materials to surfaces without destroying them. Due to these advantages, micro-CT has been recommended as a standard imaging tool in dental research for many applications such as tissue engineering, endodontics, restorative dentistry, and research on the mineral density of hard tissues and bone growth. However, the high costs of micro-CT, the time necessary for scanning and reconstruction, computer expertise requirements, and the enormous volume of information are drawbacks. Conclusion: The potential of micro-CT as an emerging, accurate, non-destructive approach is clear, and the valuable research findings reported in the literature provide an impetus for researchers to perform future studies focusing on employing this method in dental research.

ELECTRICAL IMPEDANCE IMAGING FOR SEARCHING ANOMALIES

  • Ohin Kwon;Seo, Jin-Keun;Woo, Eung-Je;Yoon, Jeong-Rock
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.459-485
    • /
    • 2001
  • The aim of EIT (electrical impedance tomography) system is to image cross-section conductivity distribution of a human body by means of both generating and sensing electrodes attached on to the surface of the body, where currents are injected and voltages are measured. EIT has been suffered from the severe ill-posedness which is caused by the inherent low sensitivity of boundary measurements to any changes of internal tissue conductivity values. With a limited set of current-to-voltage data, figuring out full structure of the conductivity distribution could be extremely difficult at present time, so it could be worthwhile to extract some necessary partial information of the internal conductivity. We try to extract some key patterns of current-to-voltage data that furnish some core information on the conductivity distribution such s location and size. This overview provides our recent observation on the location search and the size estimation.

  • PDF

Surgical Management and Long-Term Follow-Up of a Giant Hepatic Cyst with an Internal Septum in a Cat

  • Kim, Kihoon;Kim, Hyungjoon;Eom, Ki-Dong;Kim, Hwi-Yool
    • Journal of Veterinary Clinics
    • /
    • v.38 no.6
    • /
    • pp.295-298
    • /
    • 2021
  • A 1-year-old spayed female Scottish Fold cat presented with a 1.5-month history of vomiting, intermittent dyspnea, and abdominal distention. Radiographic, ultrasonographic, and computed tomographic examinations suggested a tentative diagnosis of a fluid-containing cystic mass with an internal septum. The mass was surgically removed. Histological examinations revealed that the mass was a non-neoplastic hepatic cyst. The patient had no recurrence of the cystic structure but died of acute renal failure 5 years after the surgery. This report describes the unusual case of a giant hepatic cyst with clinical signs that resolved after mass removal.