• Title/Summary/Keyword: internal strain

Search Result 804, Processing Time 0.024 seconds

A simple prediction procedure of strain-softening surrounding rock for a circular opening

  • Wang, Feng;Zou, Jin-Feng
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.619-626
    • /
    • 2018
  • A simple prediction procedure was investigated for calculating the stresses and displacements of a circular opening. Unlike existed approaches, the proposed approach starts each step with a radius increment. The stress for each annulus could be obtained analytically, while strain increments for each step can be determinate numerically from the compatility equation by finite difference approximation, flow rule and Hooke's law. In the successive manner, the distributions of stresses and displacements could be found. It should be noted that the finial radial stress and displacement were equal to the internal supporting pressure and deformation at the tunnel wall, respectively. By assuming different plastic radii, GRC and the evolution curve of plastic radii and internal supporting pressures could be obtained conveniently. Then the real plastic radius can be calculated by using linear interpolation in the evolution curve. Some numerical and engineering examples were performed to demonstrate the accuracy and validity for the proposed procedure. The comparisons results show that the proposed procedure was faster than that in Lee and Pietrucszczak (2008). The influence of annulus number and dilation on the accuracy of solutions was also investigated. Results show that the larger the annulus number was, the more accurate the solutions were. Solutions in Park et al. (2008) were significantly influenced by dilation.

Comparative Proteomic Analysis of Virulent Korean Mycobacterium tuberculosis K-strain with Other Mycobacteria Strain Following Infection of U-937 Macrophage

  • Ryoo, Sung-Weon;Park, Young-Kil;Park, Sue-Nie;Shim, Young-Soo;Liew, Hyun-Jeong;Kang, Seong-Man;Bai, Gill-Han
    • Journal of Microbiology
    • /
    • v.45 no.3
    • /
    • pp.268-271
    • /
    • 2007
  • In Korea, the Mycobacterium tuberculosis K-strain is the most prevalent clinical isolates and belongs to the Beijing family. In this study, we conducted comparative porteomics of expressed proteins of clinical isolates of the K-strain with H37Rv, H37Ra as well as the vaccine strain of Mycobacterium bovis BCG following phagocytosis by the human monocytic cell line U-937. Proteins were analyzed by 2-D PAGE and MALDI-TOF-MS. Two proteins, Mb1363 (probable glycogen phosphorylase GlgP) and MT2656 (Haloalkane dehalogenase LinB) were most abundant after phagocytosis of M. tuberculosis K-strain. This approach provides a method to determine specific proteins that may have critical roles in tuberculosis pathogenesis.

Anisotropic continuum damage analysis of thin-walled pressure vessels under cyclic thermo-mechanical loading

  • Surmiri, Azam;Nayebi, Ali;Rokhgireh, Hojjatollah;Varvani-Farahani, Ahmad
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.101-108
    • /
    • 2020
  • The present study intends to analyze damage in thin-walled steel cylinders undergoing constant internal pressure and thermal cycles through use of anisotropic continuum damage mechanics (CDM) model coupled with nonlinear kinematic hardening rule of Chaboche. Materials damage in each direction was defined based on plastic strain and its direction. Stress and strain distribution over wall-thickness was described based on the CDM model and the return mapping algorithm was employed based on the consistency condition. Plastic zone expansion across the wall thickness of cylinders was noticeably affected with change in internal pressure and temperature gradients. Expansion of plastic zone over wall-thickness at inner and outer surfaces and their boundaries demarking elastic and plastic regions was attributed to the magnitude of damage induced over thermomechanical cycles on the thin-walled samples tested at various pressure stresses.

Shrinkage Strain Property of the Magnesium Oxide Matrix According to Magnesium Chloride Addition Ratio (염화마그네슘 첨가율에 따른 산화마그네슘 경화체의 길이변화 특성)

  • Jung, Byeong-Yeol;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.150-151
    • /
    • 2013
  • Recently, the internal space organization of the building changes to the frame construction and flat slab construction in the wall type structure. And the use of light weight panel changing the internal joint use easily is increased. Therefore, in this research, the length change characteristic that the magnesium chloride addition rate reaches to the magnesium curing body tries to be studied. It could confirm according to the length change specific result that the magnesium chloride amount of addition reaches to the magnesium oxide curing body to expand. And the thing described below was the large-scale expansion the magnesium oxide addition rate 60%. And it showed up as 50, 40, 30, 20, and order of 10s (%). It could look at to form the hydrate of the SEM picture result needle-shaped of the Hardened.

  • PDF

Root Colonization and ISR-mediated Anthracnose Disease Control in Cucumber by Strain Enterobacter asburiae B1

  • Bharathkumar, S.;Park, Jin-Woo;Han, Ji-Hee;Park, Kyung-Seok
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.333-343
    • /
    • 2009
  • Here, we show that an endophytic bacterial strain, Enterobacter asburiae B1 exhibits the ability to elicit ISR in cucumber, tobacco and Arabidopsis thaliana. This indicates that strain B1 has a widespread ability to elicit ISR on various host plants. In this study, E. asburiae strain B1 did not show antifungal activity against tested major fungal pathogens, Colletotrichum orbiculare, Botrytis cinerea, Phytophthora capsici, Rhizoctonia solani, and Fusarium oxysporum. Moreover, the siderophore production by E. asburiae strain B1 was observed under in vitro condition. In greenhouse experiments, the root treatment of strain B1 significantly reduced disease severity of cucumber anthracnose caused by fungal pathogen C. orbiculare compared to nontreated control plants. By root treatment of strain B1 more than 50% disease control against anthracnose on cucumber was observed in all greenhouse experiments. Simultaneously, under the greenhouse condition, the soil drench of strain B1 and a chemical inducer benzothiadiazole (BTH) to tobacco plants induced GUS activity which is linked with activation of PR promoter gene. Furthermore, in Arabidopsis thaliana plants the soil drench of strain B1 induced the defense gene expression of PR1 and PDF1.2 related to salicylic acid and jasmonic acid/ethylene signaling pathways, respectively. In this study, for the main focus on root colonization by strain B1 associated with defense responses, bacterial cells of strain B1 was tagged with the gfp gene encoding the green fluorescent protein in order to determine the colonization pattern of strain B1 in cucumber. The gfp-tagged B1 cells were found on root surface and internal colonization in root, stem, and leaf. In addition to this, the scanning electron microscopy observation showed that E. asburiae strain B1 was able to colonized cucumber root surface.

Study on the Causes of Premature Cracking of Epoxy Coatings for Ship's Ballast Tanks

  • Song, Eun Ha;Lee, Ho Il;Chung, Mong Kyu;Lee, Seong Kyun;Baek, Kwang Ki
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.69-76
    • /
    • 2006
  • Premature cracking of the epoxy coatings applied on ship's ballast tanks(BT) can lead to damage of ship's hulls. To avoid this, it's important to have clear understanding of the underlying mechanism and primary factors of the coating crack. In this study, the efforts were made to clarify the integrated effects of main factors, i.e., initial coating shrinkage, thermally induced strain, steel-structural strain and the intrinsic coating flexibility at the initial and after aging, to the early cracking phenomena of epoxy coating in the ship's ballast tank. The coating crack is caused by combination of thermal stress, structural stress, and internal stresses which is closely related to chemical structures of the coatings. On the other hand, thermal stresses and dimensional stabilities would rarely play a major role in coating crack for ballast tank coatings with rather large flexibility. Crack resistance of the coatings at early stages can be estimated roughly by measuring internal stress, FT-IR and $T_g$ value of the coatings. A new screening test method was also proposed in this study, which can be possibly related to the long-term resistance of epoxy-based paints to cracking.

Internal Stress, Anelasticity and Recovery in Steady State Creep of 2024 Al Alloy at High Temperature (2024 Al 합금의 고온 정상크리이프 중의 내부응력의 탄성 및 회복에 관한 연구)

  • 박경동;오세욱;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.292-297
    • /
    • 1986
  • Measurements of internal stress .sigma.$_{i}$, anelastic strain .epsilon.$_{A}$ and recovery rate .gamma. were made in steady state creep of 2024 Al alloys over a wide range of stresses at temperatures between 260.deg. C and 380.deg. C, for the purpose of investigating the relations among the three parameters. Values of .sigma.$_{i}$ were obtained by the method of strain transient dip test, and those of .epsilon.$_{A}$ and .gamma. were determined from the results of sudden stress removal or reduction tests. As a main result, it is thought that the anelastic behavior and recovery process are basically dependent on same deformation mechanisms.sms.sms.

Experimental Study on Reinforcement Effects of Soil Shear Strength by Nylon Net(Substitute Materials Simulating a Root System) -Analysis using Simple Shear Tester under Soil Suction Control - (Nylon Net(대체근계)의 토질강도보강효과에 대한 실험적 연구 - 토양수분제어하의 단순전단시험에 의한 해석 -)

  • Lee, Chang-Woo;Youn, Ho-Joong;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.3
    • /
    • pp.76-81
    • /
    • 2006
  • The reinforcement of soil shear strength by nylon net as substitute materials simulating a fine root system was evaluated by soil strength parameters(apparent cohesion(c) and internal friction angle(tan${\phi}$), using simple shear tester which clearly depicts shear deformation and controls soil suction. And the results of shear test by using bamboo as a substitute materials simulating a main root system and using nylon net as a substitute materials simulating a fine root system were compared. The reinforcement of soil strength by nylon net are expressed by apparent cohesion more than internal friction angle. In addition the increment of apparent cohesion by nylon net reached a peak in suction 60 $cmH_2O$. Different from with bamboo, the possibility of the change on internal friction angle(tan${\phi}$) caused by the soil water condition was shown in shear strain 20% condition. These results show that the mechanism of reinforcement by substitute materials simulating root system may be different in the condition of various soil water content.

Effect of Bend Angle on Plastic Loads of Pipe Bends Under Internal Pressure and In-Plane Bending (내압과 굽힘하중을 받는 곡관의 소성 하중에 굽힘 각도가 미치는 영향)

  • Lee, Kuk-Hee;Oh, Chang-Sik;Yoo, Bong;Park, Chi-Yong;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.3 s.258
    • /
    • pp.322-330
    • /
    • 2007
  • This paper quantifies the effect of a bend angle of a pipe bend on plastic loads, via small strain and large strain FE limit analyses using elastic-perfectly plastic materials. To consider the effect of the attached straight pipe, two limiting cases are considered. One case corresponds to the pipe bend without the attached straight pipe, and the other to that with a sufficiently long attached straight pipe. For the former case, the FE results suggest that the limit load is not affected by the bend angle for both in-plane bending and internal pressure. For the latter case, however, the bend angle affects plastic loads. An interesting finding is that the plastic load smoothly changes from the limit load of the straight pipe when the bend angle approaches zero to the plastic load of the $90^{\circ}$ pipe bend when the bend angle approaches 90 degree. Based on such observations, closed-form plastic load solutions are proposed for the pipe bend with an arbitrary bend angle under in-plane bending and internal pressure.

Plastic Limit Loads of 90° Elbows with Local Wall Thinning using Small Strain FE Limit Analyses (I) - Internal Pressure - (소변형 이론에 입각한 감육이 존재하는 90 도 곡관의 한계하중 (I) - 내압 -)

  • An, Joong-Hyok;Kim, Jong-Hyun;Hong, Seok-Pyo;Park, Chi-Yong;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.586-593
    • /
    • 2007
  • This paper proposes closed-form plastic limit load solutions for elbow with local wall thinning at extrados under internal pressure. This work was performed using 3-dimensional, small strain FE analyses based on elastic-perfectly plastic materials. The wide range of elbow and local wall thinning geometries are considered. For systematic analyses for effect of axial thinning extent on limit loads, two limiting cases are considered; a sufficiently long thinning, and the circumferential part-through surface crack. Then, the closed-form plastic limit load solutions for intermediate thinning are obtained by using result of two limiting cases. The effect of axial thinning extent for elbow on plastic limit load is highlighted by comparing with that for straight pipes. Although the proposed limit load solutions are developed for the case when local wall thinning exist in the center of elbow, it is also shown that they can be applied to the case when local wall thinning exists anywhere within elbow.