Comparative Proteomic Analysis of Virulent Korean Mycobacterium tuberculosis K-strain with Other Mycobacteria Strain Following Infection of U-937 Macrophage

  • Ryoo, Sung-Weon (Department of Microbiology, Korean Institute of Tuberculosis) ;
  • Park, Young-Kil (Department of Microbiology, Korean Institute of Tuberculosis) ;
  • Park, Sue-Nie (National Center for Toxicological Research, Korea Food and Drug Administration) ;
  • Shim, Young-Soo (Department of Internal Medicine, College of Medicine, Seoul National University) ;
  • Liew, Hyun-Jeong (Department of Pharmacology, College of Medicine, Seoul National University) ;
  • Kang, Seong-Man (Graduate School of Biotechnology, Korea University) ;
  • Bai, Gill-Han (Department of Microbiology, Korean Institute of Tuberculosis)
  • Published : 2007.06.30

Abstract

In Korea, the Mycobacterium tuberculosis K-strain is the most prevalent clinical isolates and belongs to the Beijing family. In this study, we conducted comparative porteomics of expressed proteins of clinical isolates of the K-strain with H37Rv, H37Ra as well as the vaccine strain of Mycobacterium bovis BCG following phagocytosis by the human monocytic cell line U-937. Proteins were analyzed by 2-D PAGE and MALDI-TOF-MS. Two proteins, Mb1363 (probable glycogen phosphorylase GlgP) and MT2656 (Haloalkane dehalogenase LinB) were most abundant after phagocytosis of M. tuberculosis K-strain. This approach provides a method to determine specific proteins that may have critical roles in tuberculosis pathogenesis.

Keywords

References

  1. Bahk, Y.Y., S.A. Kim, J.S. Kim, H.J. Euh, G.H. Bai, S.N. Cho, and Y.S. Kim. 2004. Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. Proteomics 4, 3299-3307 https://doi.org/10.1002/pmic.200400980
  2. Bollag, D.M., M.D. Rozycki, and S.T. Edelstein. 1996. Protein methods, p. 94-95. 2nd ed. Wiley-liss, New York, USA
  3. Cherepkova, O.A. and B.Y. Gurvits. 2004. Macrophage migration inhibitory factor: identification of the 30-kDa MIF-related protein in bovine brain. Neurochem Res. 29, 1399-1404 https://doi.org/10.1023/B:NERE.0000026403.06238.73
  4. Cherepkova, O.A., E.M. Lyutova, T.B. Eronina, and B.Y. Gurvits. 2005. Chaperone-like activity of macrophage migration inhibitory factor. Int. J. Biochem. Cell. Biol. 38, 43-55 https://doi.org/10.1016/j.biocel.2005.07.001
  5. Corbett, E.L., C.J. Watt, N. Walker, D. Maher, B.G. Williams, M.C. Raviglione, and C. Dye. 2003. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch. Intern. Med. 163, 1009-1021 https://doi.org/10.1001/archinte.163.9.1009
  6. Hong, Y.P., S.J. Kim, W.J. Lew, E.K. Lee, and Y.C. Han. 1995. The seventh nationwide tuberculosis prevalence survey in Korea. Int. J. Tuberc. Lung Dis. 2, 27-36
  7. Jesenska, A., I. Sedlacek, and J. Damborsky. 2000. Dehalogenation of haloalkanes by Mycobacterium tuberculosis H37Rv and other mycobacteria. Appl. Environ. Microbiol. 66, 219-222 https://doi.org/10.1128/AEM.66.1.219-222.2000
  8. Jesenska, A., M. Pavlova, M. Strouhal, R. Chaloupkova, I. Tesinska, M. Monincova, Z. Prokop, M. Bartos, I. Pavlik, I. Rychlik, P. Mobius, Y. Nagata, and J. Damborsky. 2005. Cloning, biochemical properties, and distribution of mycobacterial haloalkane dehalogenases. Appl. Environ. Microbiol. 71, 6736-6745 https://doi.org/10.1128/AEM.71.11.6736-6745.2005
  9. Kim, S.J, G.H. Bai, H. Lee, H.J. Kim, W.J. Lew, Y.K. Park, and Y. Kim. 2001. Transmission of Mycobacterium tuberculosis among high school students in Korea. Int. J. Tuberc. Lung Dis. 5, 824-830
  10. Mahairas, G.G., P.J. Sabo, M.J. Hickey, D.C. Singh, and C.K. Stover. 1996. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J. Bacteriol. 178, 1274-1282 https://doi.org/10.1128/jb.178.5.1274-1282.1996
  11. Mattow, J., P.R. Jungblut, U.E. Schaible, H.J. Mollenkopf, S. Lamer, U. Zimny-Arndt, K. Hagens, E.C. Muller, and S.H. Kaufmann. 2001. Identification of proteins from Mycobacterium tuberculosis missing in attenuated Mycobacterium bovis BCG strains. Electrophoresis 22, 2936-2946 https://doi.org/10.1002/1522-2683(200108)22:14<2936::AID-ELPS2936>3.0.CO;2-S
  12. Park, Y.K., G.H. Bai, and S.J. Kim. 2000. Restriction fragment length polymorphism analysis of Mycobacterium tuberculosis isolated from countries in the western pacific region. J. Clin. Microbiol. 38, 191-197
  13. Rabilloud, T., S. Kieffer, V. Procaccio, M. Louwagie, P.L. Courchesne, S.D. Patterson, P. Martinez, J. Garin, and J. Lunardi. 1998. Twodimensional electrophoresis of human placental mitochondria and protein identification by mass spectrometry: toward a human mitochondrial proteome. Electrophoresis 19, 1006-1014 https://doi.org/10.1002/elps.1150190616
  14. Stucki, G. and M. Thuer. 1995. Experiences of a large-scale application of 1, 2-dichloroethane degrading microorganisms for groundwater treatment. Environ. Sci. Technol. 29, 2339-2345 https://doi.org/10.1021/es00009a028
  15. Wong, D.K., B.Y. Lee, M.A. Horwitz, and B.W. Gibson. 1999. Identification of fur, aconitase, and other proteins expressed by Mycobacterium tuberculosis under conditions of low and high concentrations of iron by combined two-dimensional gel electrophoresis and mass spectrometry. Infect Immun. 67, 327-336
  16. Zhang, W. and B. Chait. 2000. ProFound-an expert system for protein identification using mass spectrometric peptide mapping information. Anal. Chem. 72, 2482-2489 https://doi.org/10.1021/ac991363o