Browse > Article
http://dx.doi.org/10.5423/PPJ.2009.25.4.333

Root Colonization and ISR-mediated Anthracnose Disease Control in Cucumber by Strain Enterobacter asburiae B1  

Bharathkumar, S. (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA)
Park, Jin-Woo (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA)
Han, Ji-Hee (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA)
Park, Kyung-Seok (Division of Agricultural Microbiology, National Academy of Agricultural Science, RDA)
Publication Information
The Plant Pathology Journal / v.25, no.4, 2009 , pp. 333-343 More about this Journal
Abstract
Here, we show that an endophytic bacterial strain, Enterobacter asburiae B1 exhibits the ability to elicit ISR in cucumber, tobacco and Arabidopsis thaliana. This indicates that strain B1 has a widespread ability to elicit ISR on various host plants. In this study, E. asburiae strain B1 did not show antifungal activity against tested major fungal pathogens, Colletotrichum orbiculare, Botrytis cinerea, Phytophthora capsici, Rhizoctonia solani, and Fusarium oxysporum. Moreover, the siderophore production by E. asburiae strain B1 was observed under in vitro condition. In greenhouse experiments, the root treatment of strain B1 significantly reduced disease severity of cucumber anthracnose caused by fungal pathogen C. orbiculare compared to nontreated control plants. By root treatment of strain B1 more than 50% disease control against anthracnose on cucumber was observed in all greenhouse experiments. Simultaneously, under the greenhouse condition, the soil drench of strain B1 and a chemical inducer benzothiadiazole (BTH) to tobacco plants induced GUS activity which is linked with activation of PR promoter gene. Furthermore, in Arabidopsis thaliana plants the soil drench of strain B1 induced the defense gene expression of PR1 and PDF1.2 related to salicylic acid and jasmonic acid/ethylene signaling pathways, respectively. In this study, for the main focus on root colonization by strain B1 associated with defense responses, bacterial cells of strain B1 was tagged with the gfp gene encoding the green fluorescent protein in order to determine the colonization pattern of strain B1 in cucumber. The gfp-tagged B1 cells were found on root surface and internal colonization in root, stem, and leaf. In addition to this, the scanning electron microscopy observation showed that E. asburiae strain B1 was able to colonized cucumber root surface.
Keywords
Arabidopsis thaliana; cucumber plant; green fluorescent protein; GUS gene; induced systemic resistance; PR1a; PDF1.2;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Delaney, T. P., Friedrich, L. and Ryals, J. A. 1995. Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc. Natl. Acad. Sci. USA 92:6602-6606   DOI   ScienceOn
2 Goode, M. J. 1958. Physiological specialization in Colletrotri-chum lagenarium. Phytopathology 48:79-83
3 Hallmann, A. Q., Benhamou, N. and Kloepper, J. W. 1997. Bacterial endophytes in cotton: mechanisms of entering the plant. Can. J. Microbiol. 43:577-582   DOI   ScienceOn
4 Kavita, B., Sapna Shukla., Naresh Kumar, G. and Archana, G. 2008. Amelioration of phytotoxic effects of Cd on mung bean seedlings by gluconic acid secreting rhizobacterium Entero-bacter asburiae PSI3 and implication of role of organic acid. World J. Microbiol Biotechnol. 24:2965-2972   DOI   ScienceOn
5 Kieran Germaine, K., Keogh, E., Garcia-Cabellos, G., Borremans, B., van der Lelie, D., Barac, T., Oeyen, L., Vangronsveld, J., Moore, F. P., Moore, E. R. B., Campbell, C. D., Ryan, D. and Dowling, D. N. 2004. Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol. Ecol. 48:109-118   DOI   ScienceOn
6 Kishimoto, K., Matsui, K., Ozawa, R. and Takabayashi, J. 2005. Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana. Plant Cell Physiol. 46:1093-1102   DOI   ScienceOn
7 Luria, S. E. and Burrous, J. W. 1955. Hybridization between Escherichia coli and Shigella. J Bacteriol. 74:461-476
8 Mauch-Mani, B. and Slusarenko, A. J. 1996. Production of salicylic acid precursors is a major function of phenylalanine ammonialyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8:203-212   DOI   ScienceOn
9 Park, K. S. and Kloepper, J. W. 2000. Activation of PR-la promoter by rhizobacteria which induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biol. Control 18 :2-9   DOI   ScienceOn
10 Penninckx, I. A. M. A., Eggermont, K., Terras, F. R. G., Thomma, B. P. H. J., De Samblanx, G. W., Buchala, A., Metraux, J. P., Manners, J. M. and Broekaert, W. F. 1996. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309-2323   DOI   ScienceOn
11 Sambrook, J., Fritsch, E. and Maniatis, T. 1989. Molecular Cloning: a Laboratory Manual Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
12 Schneider, S. and Ullrich, W. R. 1991. Differential induction of resistance and enhanced enzyme activities in cucumber and tobacco caused by treatment with various abiotic and biotic inducers. Physiol. Mol. Plant Pathol. 45:291-301   DOI   ScienceOn
13 Uknes, S., Dincher, S., Friedrich, L., Negrotto, D., Williams, S., Thompson-Taylor, H., Potter, S., Ward, E. and Ryals, J. 1993. Regulation of pathogenesis-related protein-1a gene expression in tobacco. Plant Cell 5:159-169   DOI   ScienceOn
14 Wei, G, Kloepper, J. W. and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phyto pathology 81:1508-12
15 Wisniewski, M., Wilson, C. and Hershberger, W. 1989. Characterization of inhibition of Rhizopus stolonifer germination and growth by Enterobacter cloacae. Can. J. Bot. 67:2317-2323   DOI
16 Chernin, L., Ismailov, Z., Haran, S. and Chet, I. 1995. Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens Appl. Environ. Microbiol. 61:1720-1726   PUBMED
17 Melan, M. A., Dong, X., Endara, M. E., Davis, K. R., Ausubel, F. M. and Peterman, T. K. 1993. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyljasmonate. Plant Physiol. 101:441-450   DOI   ScienceOn
18 Kampfer, P., Ruppel, S. and Rainer, R. 2005. Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae. Syst. Appl. Microbiol. 28:213-221   DOI   ScienceOn
19 Wilson, K. J., Jefferson, R. A. and Hughes, S. R. 1992. The Escherichia coli gus operon: Induction and expression of the gus operon in E. coli and the occurrence and use of GUS in other bacteria. In 'GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression' (S. R. Gallagher, Ed.), pp. 7-22. Academic Press, New York
20 Benhamou, N., Belanger, R. R. and Paulitz, T. C. 1996. Ultrastructural and cytochemical aspects of the interaction between Pseudomonas fluorescens and Ri T-DNA transformed pea roots: Host response to colonization by Pythium ultimum Trow. Planta 199:105-117   DOI
21 Milagres, A. M. F., Machuca, A. and Napoleao, D. 2004. Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. J. Microbiol. Methods 37:1-6   DOI   ScienceOn
22 Pieterse, C. M. J., van Wees, S. C. M., Hoffiand, E., van Pelt, J. A. and van Loon, L. C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225-1237   DOI   ScienceOn
23 Fang, Z. D. 1998. Methods of Plant Pathology. China Agriculture Press, Beijing
24 Zdor, R. and Anderson, A. J. 1992. Influence of root colonizing pseudomonads on defense mechanisms of bean. Plant Soil 140:99-107   DOI
25 Haas, D., Keel, C. and Reimmann, C. 2002. Signal transduction in plant beneficial rhizobacteria with biocontrol properties. Antonie Leeuwenhoek 81:385-395   DOI   ScienceOn
26 van Loon, L. C. and Glick, G. R. 2004. Increased plant fitness by rhizobacteria. Pages 177-205 in: Molecular Ecotoxicology of Plants. Vol. 170. H. Sandermann, ed. Springer-Verlag, Berlin   DOI
27 van Wees, S. C. M., De Swart, E. A. M., Van Pelt, J. A., Van Loon, L. C. and Pieterse, C. M. J. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate-and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97:8711-8716   DOI   ScienceOn
28 van Wees, S. C. M., Luijendijk, M., Smoorenburg, I., van Loon, L. C. and Pieterse, C. M. J. 1999. Rhizobacteria-mediated induced systemic resistance (ISR) inArabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon challenge. Plant Mol. Biol. 41:537-549   DOI   ScienceOn
29 Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., Chandler, D., Slusarenko, A., Ward, E. and Ryals, J. 1992. Acquired resistance in Arabidopsis. Plant Cell 4:645-656   DOI   ScienceOn
30 Kloepper, J. W., Wei, G. and Tuzun, S. 1992. Rhizosphere population dynamics and internal colonization of cucumber by plant growth-promoting rhizobacteria which induce systemic resistance to Colletotrichum orbiculare. Pages 185-191 in: Biological control of plant diseases. E. S. Tjamos, ed. Plenum Press, New York
31 Shin, J. H., Yoon, J. H., Ahn, E. K., Kim, M. S., Sim, S. J. and Park, T. H. 2007. Fermentative hydrogen production by the newly isolated Enterobacter asburiae SNU-1. International J. Hydrogen Energy 32:192-199   DOI   ScienceOn
32 Bell, E. and Mullet, J. E. 1993. Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol. 103:1133-1137   DOI   ScienceOn
33 McConn, M., Creelman, R. A., Bell, E., Mullet, J. E. and Browse, J. 1997. Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 94:5473-5477   DOI   ScienceOn
34 Press, C. M., Wilson, M., Tuzun, S. and Kloepper, J. W. 1997. Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant-Microbe Interact. 10:761-768   DOI   ScienceOn
35 Jefferson, R. A. 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Bioi. Reptr. 5:387-405   DOI
36 Maurhofer, M., Reimmann, C., Schmidli-Sacherer, P., Heeb, S., Haas, D. and Defago, G. 1998. Salicylic acid biosynthesis genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678-684   DOI   ScienceOn
37 Musson, G., Mcinroy, J. A. and Kloepper, J. W. 1995. Development of delivery systems for introducing endophytic bacteria into cotton. Biocon. Sci. Technol. 5:407-416   DOI   ScienceOn
38 Potter, S., Uknes, S., Lawton, K., Winter, A. M., Chandler, D., DiMaio, J., Novitzky, R., Ward, E. and Ryals, J. 1993. Regulation of a hevein-like gene in Arabidopsis. Mol. Plant-Microbe Interact. 6:680-685   DOI   PUBMED   ScienceOn
39 Siedow, J. N. 1991. Plant lipoxygenases: structure and function. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42:145-188   DOI   ScienceOn
40 Chen, C. Q., Belanger, R. R., Benhamou, N. and Paulitz, T. C. 1999. Role of salicylic acid in systemic resistance induced by Pseudomonas spp. against Pythium aphanidermatum in cucumber roots. Eur. J. Plant Pathol. 105:477-486   DOI
41 van Loon, L.C., Bakker, P.A.H.M. and Pieterse, C.M.J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453-483   DOI   ScienceOn
42 Penninckx, I. A. M. A., Thomma, B. P. H. J., Buchala, A., Metraux, J. P. and Broekaert, W F. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103-2113   DOI   ScienceOn
43 Takeuchi, T., Yoshikawa, Y., Takeba, G., Tanaka, K., Shibata, D. and Horino, O. 1990. Molecular cloning and ethylene induction of mRNA encoding a phytoalexin elicitor-releasing factor, $\beta$-1 ,3,-endoglucanase, in soybean. Plant Physiol. 93:673-682   DOI   ScienceOn
44 Ran, L. X., van Loon, L. C. and Bakker, P. A. H. M. 2005. No role for bacterially produced salicylic acid in rhizobacterial induction of systemic resistance in Arabidopsis. Phytopathology 95:1349-1355   DOI   ScienceOn
45 Samac, D. A., Hironaka, C. M., Yallaly, P. E. and Shah, D. M. 1990. Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol. 93:907-914   DOI   ScienceOn
46 SAS Institute. 1995. JMP Statistics and Graphics Guide. Version 3. pp. 65-95. Cary, NC
47 Jetiyanona, K. and Kloepper, J. W. 2002. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biol. Control 24:285-291   DOI   ScienceOn
48 Gyaneshwar, P., Parekh, L. J., Archana, G, Poole, P S., Collins, M. D., Hutson, R. A. and Kumar, G. N. 1999. Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol. Lett. 171:223-229   DOI   ScienceOn
49 Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026   DOI   ScienceOn
50 Thomma, B. P. H. J., Eggermont, K., Penninckx, I. A. M. A., Mauch-Mani, B., Cammue, B. P. A. and Broekaert, W. F. 1998. Separate jasmonate-dependent and salicylic acid-dependent defense response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95:15107-15111   DOI   ScienceOn
51 Leeman, M., Denouden, E. M., van Pelt, J. A., Dirkx, F., Steijl, H., Bakker, P. and Schippers, B. 1996. Iron availability affects induction of systemic resistance to fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86:149-155   DOI
52 Ongena, M., Jourdan, E., Adam, A., Schafer, M., Budzikiewicz, H. and Thonart, P. 2008. Amino acids, iron and growth rate as key factors influencing production of the Pseudomonas putida BTP1benzylamine derivative involved in systemic resistance induction in different plants. Microb. Ecol. 55:280-292   DOI   ScienceOn
53 Shoebitz, M., Ribaudo, C. M., Pardo, M. A., Cantore, M. L., Luigi Ciampi and Cura, J. A. 2007. Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Bioi. Biochem. 1-7
54 Hoagland, D. R. and Boyer, T. C. 1936. General nature and process of salt accumulation by roots with description of experimental methods. Plant Physiol. 11:471-507   DOI   ScienceOn
55 van Wees, S., Pieterse, C., Trijssenaar, A., Vant Westende, Y., Hartog, F. and van Loon, L. C. 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant-Microbe Interact. 10:716-724   DOI   ScienceOn
56 van Peer, R., Niemann, Gland Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728-734   DOI
57 Vleesschauwer, D. D., Chernin, L. and Hafte, M. M. 2009. Differential effectiveness of Serratia plymuthica ICl270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant BioI. 9:9   DOI   ScienceOn
58 Pieterse, C. M., van Wees, S. C., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J. and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-80   DOI   ScienceOn
59 Desaki, Y., Miya, A., Venkatesh, B., Tsuyumu, S., Yamane, H., Kaku, H., Minami, E. and Shibuya, N. 2006. Bacterial lipo-polysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol. 47:1530-1540   DOI   ScienceOn
60 Hallmann, J., Quadt-Hallmann, A., Rodriguez-Kabana, R. and Kloepper, J. W. 1998. Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol. Biochem. 30:925-937   DOI   ScienceOn
61 Pieterse, C. M. J. and van Loon, L. C. 1999. Salicylic acid independent plant defense pathways. Trends Plant Sci. 4:52-58   DOI   ScienceOn