• Title/Summary/Keyword: internal resistance of a battery

Search Result 66, Processing Time 0.027 seconds

A Study on the Parameters Estimation for SOC and SOH of the Battery (SOC 및 SOH 추정을 위한 파라미터 추정기법에 관한 연구)

  • Park, Sung-Jun;Song, Gwang-Suk;Park, Seong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.853-863
    • /
    • 2020
  • As the battery ages, the internal resistance of the battery increases, so the loss due to the internal resistance increases at the same charging current, causing the battery temperature to rise, which further accelerates battery aging. Therefore, it is necessary to optimize the charging conditions according to the aging of the battery or the current charge amount, and to accurately estimate this, estimation of the parameters of the equivalent circuit is most important. This paper proposes a new measurement technique that can measure the internal resistance of a battery by analyzing a specific high frequency voltage and current applied to the battery. In addition, in order to test the validity of the proposed measurement technique, the current charging amount was estimated based on the measured internal resistance, and the terminal voltage of the constant current charging mode was automatically set and operated. As a result, good results were obtained regardless of the battery voltage. If this equipment is installed in the charging device, it is believed that it will be of great help in the stability management of the aging reusable battery.

Development of Aging Diagnosis Device Through Real-time Battery Internal Resistance Measurement

  • Kim, Sang-Bum;Lee, Sang-Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.129-135
    • /
    • 2022
  • Currently, the rapid growth of electric vehicles and the collection and disposal of waste batteries are becoming a social problem. The purpose of this paper is to propose a fast and efficient battery screening method through a safe inspection and storage method according to the collection and storage of waste batteries of electric vehicles. In addition, as the resistance inside the waste battery increases, an instantaneous voltage drop occurs, and there is a risk of overcharging and overdischarging compared to the initial state of the battery. Accordingly, there are great difficulties in operation, so the final goal of this study is to develop a device for diagnosing aging through real-time battery internal resistance measurement. Final result As a result of simulation of the internal resistance measurement test circuit through external impedance (AC), the actual simulation value was 0.05Ω, RS = Vrms / Irms => Vrms = 8.0036mV, Irms = 162.83Ma. Substitute the suggested method. The result was calculated as Rs = 0.0495Ω. It is possible to measure up to 64 impedances inside the aging diagnostic equipment that enables real-time monitoring of the developed battery cells, and the range can be changed according to the application method.

A Study on the development and calibration method of a modular internal resistance meter to improve the safety of reusable batteries

  • Mi-Jin Choi;Sang-Bum Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.228-235
    • /
    • 2024
  • Battery use is increasing worldwide to achieve carbon neutrality and improve energy efficiency, but batteries are a finite resource and their application is determined by capacity and specifications. Battery performance deteriorates as the number of uses increases. A certain level of battery performance degradation has become an issue in the field of reuse and recycling, and various studies are being conducted on reuse to solve power shortages. Waste batteries from electric vehicles are suitable for building ESS based on reusable batteries, and for stable use, technical skills are needed to accurately predict battery life and determine status information. Predicting battery life and determining status information are difficult due to non-linearity due to internal structure or chemical changes. In this paper, we manufactured a modular internal resistance measuring device and compared the measured values with Hioki equipment to minimize the error rate through a correction method. As a result of testing Hioki equipment and modular measuring instruments to ensure efficiency and safety based on reusable batteries, an accuracy of over 95% was confirmed.

A Study on Degradation Diagnosis of Secondary Battery (산업용 이차전지의 열화판정에 관한 연구)

  • Nam, Jong-Ha;Tae, Yong-Jun;Yeo, In-Young;Choi, Jin-Hong;Cheon, Chang-Yeol;Kim, Jae-Woong
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.170-172
    • /
    • 2005
  • Internal battery ohmic measurements have been a hot topic amongst battery users and battery manufacturers. As a battery deteriorates and loses its capacity, the internal resistance of the battery increases. Everyone seems to agree that measuring the internal parameters of a cell can be very useful in determining a battery's state of health. In this paper experiences show that if a cell's resistance increases by more than25% above its baseline value(known good resistance of new 100% capacity cell), the cell will no loger be able to deliver 80% or more of the rated capacity.

  • PDF

Battery Internal Resistance Measurement System Robust to Charger Harmonic Noise (충전기 고조파 잡음에 강인한 배터리 내부저항 측정 시스템)

  • Lee, Hyung-Kyu;Kim, Gi-Taek
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1129-1135
    • /
    • 2020
  • The effects of battery aging limit the rechargeable capacity, State of Health(SoH). It is very important to estimate the SoH in the battery monitoring system(BMS) and many algorithms of measuring the internal resistance of the battery were proposed. A method is used by applying a current source of a specific frequency to the battery and measuring the voltage response. When charging harmonic noise is generated in the voltage response, it results in poor resistance measurement accuracy. In this paper, a robust battery internal resistance measurement algorithm is proposed to eliminate the effect of charging noise by integrating the current source and voltage response signals for a certain period. It showed excellent accuracy and stable measurement results. Applying to the BMS for uninterruptible power supply, the usefulness of the proposed method is verified.

Design and Development of a Public Waste Battery Diagnostic Device

  • Kim, Sang-Bum;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.281-286
    • /
    • 2022
  • In this study, design of an intuitive internal resistance diagnostic device is to diagnose the residual capacity and aging of the battery regardless of the model and the internal protocol of the waste battery through the method of measuring the internal resistance of a waste battery. In this paper, charging and discharging were continuously performed with 2A charging and 5A discharging in order to secure data on impedance changes that may occur in the charging and discharging process of various methods. As a result of the final experiment, it was confirmed that the impedance change occurred during charging and discharging, and the amount of change increased as the charging/discharging C-rate increased. In addition, it was confirmed that the waste battery aged or abnormal cell had a large change in the impedance value.

The Elementary School Teachers' Understandings about the Characteristics of Currents according to the Connection Methods of Batteries in Simple Electric Circuits (전지의 연결방법에 따른 전류의 특성에 대한 초등교사들의 이해도)

  • Hyun, Dong-Geul;Shin, Ae-Kyung
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.2
    • /
    • pp.335-351
    • /
    • 2014
  • The 96 elementary school teachers' the degrees of understandings about the characteristics of the currents according to the connection methods of batteries in simple electric circuits were investigated. In this study, the concepts on the characteristics of currents according to the connection methods of batteries were divided 'the learned concepts' and 'the differentiated concepts'. The characteristics of the currents in the region of the larger resistance of load than the internal resistance of a battery were called the learned concepts, they are taught in the science curriculum. While the characteristics of the currents in the region of the smaller resistance of load than the internal resistance of a battery were called the differentiated concepts, they are not exposed clearly in the science curriculum. The results obtained in this study are as follows: The average score related to the learned concepts was relatively high, while the degree of the teachers' cognitions of the internal resistance of a battery and the resistance of wires were low. Also the average score related to the differentiated concepts was very low because it seems so new to the elementary school teachers. It strongly suggests that the elementary school teachers did not understand meaningfully the characteristics of the currents related to the connections of batteries on the ground of the cognitions of the internal resistances of batteries and the resistances of loads in simple electric circuits. Hence, they might experience difficulties due to the problems occurred in relation to the connections of batteries in the elementary school science lessons.

Analysis of Characteristics and Internal Resistance of Seawater Secondary Battery according to its Usage Environment (해수이차전지의 사용 환경에 따른 특성 및 내부 저항 분석)

  • Seung-pyo Kang;Jang-mok Kim;Hyun-jun Cho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.223-229
    • /
    • 2023
  • Seawater batteries are next-generation secondary batteries that use seawater as a cathode. They utilize marine resources to provide competitive prices, high eco-friendliness, and a structure suitable for marine applications. Based on these advantages, pouch types and prismatic types have been studied and developed assuming natural seawater exposure. However, because of the electrical characteristics of the secondary battery, its capacity and internal resistance vary depending on the use environment. These characteristics are not only utilized for predicting the life of a battery but also have a direct effect on the capacity and power suitable for a specific situation. Therefore, the internal resistance was analyzed in this study by measuring the capacity depending on the seawater battery use environment and the state-of-charge-open-circuit-voltage measurement method.

Improved Low-temperature Performance of Lithium Secondary Battery Using Energy Circulating Operation (리튬 이차전지의 저온 성능 개선을 위한 에너지 순환 작동 연구)

  • Yoon, Hyun-Ki;Ha, Sang-Hyeon;Lee, Jaein
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.421-428
    • /
    • 2021
  • Lithium-ion secondary batteries exhibit advantageous characteristics such as high voltage, high energy density, and long life, allowing them to be widely used in both military and daily life. However, the lithium-ion secondary battery does have its limitation; for example, the output power and capacity are readily decreased due to the increased internal impedance during discharging at a lower temperature (-32℃, military requirement). Also, during charging at a lower temperature, lithium dendrite growth is accelerated at the anode, thereby decreasing the battery capacity and life as well. This paper describes a study that involves increasing the internal temperature of lithium-ion secondary battery by energy circulation operation in a low-temperature environment. The energy circulation operation allows the lithium-ion secondary battery to alternately charge and discharge, while the internal resistance of lithium-ion battery acts as a heating element to raise its own temperature. Therefore, the energy circulation operation method and device were newly designed based on the electrochemical impedance spectroscopy of the lithium-ion secondary battery to mediate the battery performance at a lower temperature. Through the energy circulation operation of lithium ion secondary battery, as a result of the heat generated from internal resistance in an extremely low-temperature environment, the temperature of the lithium-ion secondary battery increased by more than 20℃ within 10 minutes and showed a 75% discharging capacity compared with that at room temperature.

A Study on the Improved Load Sharing rate in Paralleled Operated Lead Acid Battery by Using Microprocessor (마이크로 프로세서를 이용한 축전지의 병렬 운전 부하분담률 개선에 관한 연구)

  • 이정민
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.493-497
    • /
    • 2000
  • A battery is the device that transforms the chemical energy into the direct-current electrical energy without a mechanical process. Unit cells are connected in series to obtain the required voltage while being connected in parallel to organize capacity for load current. Because the voltage drop down in one set of battery is faster than in two one it may result in the low efficiency of power converter with the voltage drop and cause the system shutdown. However when the system being shutdown. However when the system being driven in parallel a circular-current can be generated,. It is shown that as a result the new batteries are heated by over-charge and over-discharge and the over charge current increases rust of the positive grid and consequently shortens the lifetime of the new batteries. The difference between the new batteries and old ones is the amount of internal resistance. In this paper we can detect the unbalance current using the microprocessor and achieve the balance current by adjusting resistance of each set, The internal resistance of each set becomes constant and the current of charge and discharge comes to be balanced by inserting the external resistance into the system and calculating the change of internal resistance.

  • PDF