• Title/Summary/Keyword: internal pores

Search Result 117, Processing Time 0.03 seconds

Adsorption Properties of Paint Mixed with Powdered Activated Carbon According to the Number of Coatings (분말활성탄을 혼합한 도료의 도장횟수에 따른 흡착 특성)

  • Choi, Byung-Cheol;Kyoung, In-Soo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.25-26
    • /
    • 2021
  • Due to COVID-19, the spread of non-face-to-face culture is increasing the time spent indoors. Accordingly, it is necessary to reduce indoor air pollutants. Also, among building materials, there are paints. As the number of coatings increases, the coating film becomes thick, and there is a risk of cracking and falling off. Therefore, this study is to examine the adsorption properties of indoor air pollutants according to the number of coatings of a paint mixed with powdered activated carbon. In the experimental plan, the addition ratio of powdered activated carbon was selected as 30%, and the number of coatings was selected as primcoating, second coat, and finishing coat, and the concentration of formaldehyde and volatile organic compounds were measured. As a result, as the number of coatings increased, the concentration of formaldehyde and volatile organic compounds tended to decrease. This is considered to be due to the fact that not only the physical adsorption acted by the internal pores of the powdered activated carbon, but also because a lot of powdered activated carbon was present on the painted surface as the coating film was formed. However, since it is judged that there is an error in the concentration due to the inflow of external air as the chamber cover is opened to put the test object in the adsorption test process, it is considered that the experimental method needs to be supplemented.

  • PDF

A Study on Crack of Hydrogen Filling Pressure Vessel Using Finite Element Method (유한요소법을 이용한 수소충전용 압력용기의 균열에 관한 연구)

  • Ha Young Choi;Sung Kwang Byon;Seunghyun Cho
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.116-122
    • /
    • 2023
  • As the number of hydrogen filling stations for hydrogen supply increases with the progress of low-carbon eco-friendly energy policies, the risk of accidents is also increasing. Actual pressure vessels may have defects such as notches, pores, and inclusions that may occur during the manufacturing process. Therefore, it is necessary to evaluate the integrity of pressure vessels in the case where cracks exist in pressure vessels under internal pressure. In this paper, 3D finite element analysis was used to evaluate the structural safety of hydrogen-filled pressure vessels with surface cracks, and the shape of surface cracks was compared with the commonly used semi-elliptical shape. In the future, these results will be used to predict the remaining life of the pressure vessel in consideration of fracture mechanics.

Effects of chloride ion transport characteristics and water pressure on mechanical properties of cemented coal gangue-fly ash backfill

  • Dawei Yin;Zhibin Lu;Zongxu Li;Chun Wang;Xuelong Li;Hao Hu
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.125-137
    • /
    • 2024
  • In paste backfill mining, cemented coal gangue-fly ash backfill (CGFB) can effectively utilize coal-based solid waste, such as gangue, to control surface subsidence. However, given the pressurized water accumulation environment in goafs, CGFB is subject to coupling effects from water pressure and chloride ions. Therefore, studying the influence of pressurized water on the chlorine salt erosion of CGFB to ensure green mining safety is important. In this study, CGFB samples were soaked in a chloride salt solution at different pressures (0, 0.5, 1.5, and 3.0 MPa) to investigate the chloride ion transport characteristics, hydration products, micromorphology, pore characteristics, and mechanical properties of CGFB. Water pressure was found to promote chloride ion transfer to the CGFB interior and the material hydration reaction; enhance the internal CGFB pore structure, penetration depth, and chloride ion content; and fill the pores between the material to reduce its porosity. Furthermore, the CGFB peak uniaxial compression strain gradually decreased with increasing soaking pressure, whereas the uniaxial compressive strength first increased and then decreased. The resulting effects on the stability of the CGFB solid-phase hydration products can change the overall CGFB mechanical properties. These findings are significant for further improving the adaptability of CGFB for coal mine engineering.

Quantitative Evaluation for Effectiveness of Consolidation Treatment by using the Ethylsilicate for the Namsan Granite in Gyeongju (경주 남산 화강암을 대상으로 에틸실리케이트를 이용한 강화 처리에 대한 정량적 평가)

  • Han, Min-Su;Lee, Jang-Jon;Jun, Byung-Kyu;Song, Chi-Young;Kim, Sa-Dug
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.183-192
    • /
    • 2008
  • Stone cultural heritages in Korea are mostly situated out door without any notable protection thus there are severe damage from chemical and biological weathering. This in turn, causes deformation and structural damage. To counter act this problem and to increase durability, various kinds of conservation materials are used in the conservation and restoration treatment. However, there are not many practical and technological experiment done on this subject. This paper attempts quantitative evaluation of effectiveness of ethylsilicate based resin for Namsan granite in Gyeongju. When two different materials with different ethylsilicate concentration were compared, the result indicated decrease of absorption and porosity with increase of ultrasonic velocities, uniaxial compressive strength, elastic constant, tensile strength and Poisson's ratio. In addition, comparison of physical characteristic of the conservation material resulted favorably toward ones with higher concentration of ethylsilicate. This is due to the ethylsilicates characteristic to fill the internal pores of stone. There is discolouration of stone surface after treatment with conservation material. This was more prominent with the product of higher ethylsilicate concentration.

Effect of Pressing Process on the High-Temperature Stability of Yttria-Stabilized Zirconia Ceramic Material in Molten Salt of CaCl2-CaF2-CaO (CaCl2-CaF2-CaO 용융염에서 YSZ 세라믹의 고온 안정성에 미치는 성형공정의 영향)

  • Kim, Wan-Bae;Kwon, Suk-Cheol;Cho, Soo-Haeng;Lee, Jong-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.176-183
    • /
    • 2020
  • The high-temperature stability of YSZ specimens fabricated by die pressure and cold isostatic press (CIP) is investigated in CaCl2-CaF2-CaO molten salt at 1,150 ℃. The experimental results are as follows: green density 46.7 % and 50.9 %; sintering density 93.3 % and 99.3 % for die press and CIP, respectively. YSZ foremd by CIP exhibits higher stability than YSZ formed by die press due to denseness dependency after high-temperature stability test. YSZ shows peaks mainly attributed to CaZrO3, with a small t-ZrO2 peak, unlike the high-intensity tetragonal-ZrO2 (t-ZrO2) peak observed for the asreceived specimen. The t-ZrO2 phase of YSZ is likely stabilized by Y2O3, and the leaching of Y2O3 results in phase transformation from t-ZrO2 to m-ZrO2. CaZrO3 likely forms from the reaction between CaO and m-ZrO2. As the exposure time increases, more CaZrO3 is observed in the internal region of YSZ, which could be attributed to the inward diffusion of molten salt and outward diffusion of the stabilizer (Y2O3) through the pores. This results in greater susceptibility to phase transformation and CaZrO3 formation. To use SOM anodes for the electroreduction of various metals, YSZ stability must be improved by adjusting the high-density in the forming process.

Influence of Water Infiltration and Flexural Strength Change with Glazing Treatment of Dental Porcelain (치과도재의 Glazing 여부에 따른 수분침투 정도와 굽힘강도에 미치는 영향)

  • Lee, Ju-Hee;Lee, Chae-Hyun;Song, Jeong-Hwan
    • Journal of dental hygiene science
    • /
    • v.17 no.4
    • /
    • pp.358-367
    • /
    • 2017
  • The purpose of this study was to evaluate the influence of water infiltration and flexural strength changes in dental porcelain with glazing treatment. The block specimens were prepared as experimental materials, using feldspar type commercial dental porcelain; then, these were fired at $940^{\circ}C$ for 1 minute. The fired specimens were polished with a dimension of $40{\times}5.5{\times}5mm$. The specimens were distributed to two experimental groups: with and without glazing treatment specimens (n=5), and they were immersed in a solution of pH 7 for 3, 7, and 20 days at $40^{\circ}C$ after fabrication. To evaluate the flexural strength changes with water infiltration treatment in specimens with and without glazing, the 3-point flexural test was performed, using a universal testing machine until failure occurred. Starting powder and fired specimens consisted of amorphous and leucite crystalline phase. The Vickers hardness of fired specimens was more than 1.6 times higher than that of the enamel of natural teeth. According to porosimeter results, the specimens without glazing treatment exhibited a porosity of about 14.7%, whereas the glazed specimens exhibited the lowest porosity at about 1.1%. The average flexural strength of glazed specimens was higher than the flexural strength of specimens without glazing treatment (p<0.05). The flexural strength of all specimens with and without glazing treatment deteriorated with accelerated aging in the solution. In addition, significant differences between these two treatment groups were observed in all of the specimens treated at various water infiltration periods (p<0.05). The exposure of internal pores and micro-cracks in the surface due to polishing of the fired specimens influenced mechanical behaviors. Especially, the flexural strength in specimens without glazing treatment has shown significant degradation with the infiltration of water. Therefore, this study suggests that glazing processes can improve mechanical properties of dental porcelain.

Hydraulic Conductivity and Strength Characteristics of Self Recovering Sustainable Liner (SRSL) as a Landfill Final Cover (SRSL 매립지 최종 복토층의 투수 및 강도 특성)

  • Kwon, Oh-Jung;Lee, Ju-Hyung;Cho, Wan-Jei;Jung, Young-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.12
    • /
    • pp.5-15
    • /
    • 2011
  • Conventional designs of landfill covers use geosynthetics such as geomembrane and GCL, and clay liners to lower the permeability of final covers of landfill sites. However, differential settlement and the variation of temperature or humidity in landfill sites cause the development of cracks or structural damage inside the final cover. This study examined the application of a Self Recovering Sustainable Liner (SRSL) as an alternative landfill final cover material. SRSL consists of double layers, which have chemicals, can generate precipitates filling the pores of the layers by chemical reaction. The interface material forms an impermeable layer and in case of internal cracks, the reactants of the two layers migrate towards the crack and heal it by forming another liner. In this study the applicability of SRSL material for landfill final cover was examined by performing flexible wall permeameter tests to prove that the hydraulic conductivity is lower than the regulations and unconfined compression tests to judge whether the strength satisfies the restriction for the landfill final cover. Furthermore, the environmental impacts on the permeability and strength were evaluated. The experimental results show that the SRSL has lower hydraulic conductivity and higher strength than the regulations and is little influenced by climatic changes such as wet/dry or freeze/thaw process.

Effects of Membrane Size and Organic Matter on Membrane Fouling (천연유기물질의 특성과 막의 종류에 따른 막오염 메카니즘 분석)

  • Jung, Chul-Woo;Son, Hee-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1046-1054
    • /
    • 2006
  • The raw water DOC contained 39.3% of hydrophilics, 42.9% of hydriophobic, and 17.8% of transphilic. The hydrophobic fraction in this raw water was mostly fulvic acid. Fulvic acid comprised of 62% and the rest was humic acid(38%). There was more carboxylic acid functional group(64%) than phenolic group(36%). HPI-N and HPI-C comprised of 17% and 22% in the hydrophilic portion, respectively. The fouling mechanisms on the membrane surface and into its porous structure were analyzed in terms of several kinetic models. In order to analyze the fouling kinetics, the various kinetic models described in this paper were used to fit the experimental results. The kinetic models and kinetic constants obtained for each operation condition. The permeate flux was rapidly declined by simultaneous pore blocking and cake formation. Also, the permeate flux declined with decreasing internal pore size resulted from organic deposition into the membrane pore. The results of the membrane fouling test using UF membrane according to NOM fractions. HPI-N caused more fouling than HPI-C. Humic acid caused more fouling than fulvic acid probably due to higher adsorption capacity. Since humic acid has higher adsorption capacity than fulvic acid, it would be more adsorbed onto the membrane pores.

The Critical Pigment Volume Concentration Concept for Paper Coatings: I. Model Coating Systems Using Plastic Pigments and Latex Binders for Paper Coating Applications

  • Lee, Do-Ik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.1-17
    • /
    • 2002
  • The immobilization and consolidation of the model coatings based on the plastic pigment and latex binder of known particle sizes were theoretically Studied in terms of the dense random packing of binary spheres and varying extent of latex film shrinkage. The porosity of the model coatings was calculated based on three proposed latex shrinkage models: Maximum, Minimum, and Linearly Decreasing Latex Shrinkage. The increasing extent of latex shrinkage was calculated up to the critical pigment volume concentration(CPVC) as a function of plastic pigment volume fractions, and the maximum latex shrinkage was estimated from the CPVC. Also, the number of pores and the average equivalent spherical pore diameters were calculated based on those proposed models. The opacity and gloss of the model coatings on polyester films were measured and their porosity was also determined by a simple coat weight-thickness method. As expected, various coating structure-property-composition relationships, such as opacity, gloss, porosity, etc., were shown to exhibit sharp transitions near the CPVC. The CPVC values determined by the opacity, gloss, and porosity vs. PVC relationships, respectively, agreed very well with each other. Especially, the CPVC's determined by the opacity and porosity vs. PVC curves were identical. The comparison between the theoretically calculated and experimental porosity values showed that the intermediate value between the maximum and minimum latex shrinkage would best fit the experimental porosity data. The effect of plastic pigment particle size on the optical properties and porosity of model coatings was also studied and it was observed that the coating opacity and porosity increased with increasing plastic pigment particle size, but the gloss decreased. The ink gloss of the uncalendered model coatings applied onto commercial sheet offset coated papers was shown to be affected by both the coating gloss and porosity: the higher the coating gloss, the higher the ink gloss, but the higher the coating porosity, the lower the ink gloss. Their printability was also studied in terms of the number of passes-to-fail and the rate of ink setting as a function of both plastic pigment volume fractions and plastic pigment particle sizes. A minimum crack-free temperature(MCR) of latex-bound coatings was proposed to better predict the behaviors of latexes as coating binders. The wet state of model coating dispersions, the surfaces of consolidated model coatings, and their internal structure were examined by both electron and atomic force microscopy, and their micrographs were found to be consistent with our immobilization and consolidation models.

Analysis of a Gas Mask Using CFD Simulation (CFD모사기법을 이용한 가스 여과기 성능 해석)

  • Jeon, Rakyoung;Kwon, Kihyun;Yoon, Soonmin;Park, Myungkyu;Lee, Changha;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.475-483
    • /
    • 2019
  • Special chemical warfare agents are lethal gases that attack the human respiratory system. One of such gases are blood agents that react with the irons present in the electron transfer system of the human body. This reaction stops internal respiration and eventually causes death. The molecular sizes of these agents are smaller than the pores of an activated carbon, making chemical adsorption the only alternative method for removing them. In this study, we carried out a Computational Fluid Dynamics simulation by passing a blood agent: cyanogen chloride gas through an SG-1 gas mask canister developed by SG Safety Corporation. The adsorption bed consisted of a Silver-Zinc-Molybdenum-Triethylenediamine activated carbon impregnated with copper, silver, zinc and molybdenum ions. The kinetic analysis of the chemical adsorption was performed in accordance with the test procedure for the gas mask canister and was validated by the kinetic data obtained from experimental results. We predicted the dynamic behaviors of the main variables such as the pressure drop inside the canister and the amount of gas adsorbed by chemisorption. By using a granular packed bed instead of the Ergun equation that is used to model porous materials in Computational Fluid Dynamics, applicable results of the activated carbon were obtained. Dynamic simulations and flow analyses of the chemical adsorption with varying gas flow rates were also executed.