Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.4.176

Effect of Pressing Process on the High-Temperature Stability of Yttria-Stabilized Zirconia Ceramic Material in Molten Salt of CaCl2-CaF2-CaO  

Kim, Wan-Bae (Department of Materials Science and Engineering, Chungnam National University)
Kwon, Suk-Cheol (Department of Materials Science and Engineering, Chungnam National University)
Cho, Soo-Haeng (Rapidly Solidified Materials Research Center (RASOM), Chungnam National University)
Lee, Jong-Hyeon (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.30, no.4, 2020 , pp. 176-183 More about this Journal
Abstract
The high-temperature stability of YSZ specimens fabricated by die pressure and cold isostatic press (CIP) is investigated in CaCl2-CaF2-CaO molten salt at 1,150 ℃. The experimental results are as follows: green density 46.7 % and 50.9 %; sintering density 93.3 % and 99.3 % for die press and CIP, respectively. YSZ foremd by CIP exhibits higher stability than YSZ formed by die press due to denseness dependency after high-temperature stability test. YSZ shows peaks mainly attributed to CaZrO3, with a small t-ZrO2 peak, unlike the high-intensity tetragonal-ZrO2 (t-ZrO2) peak observed for the asreceived specimen. The t-ZrO2 phase of YSZ is likely stabilized by Y2O3, and the leaching of Y2O3 results in phase transformation from t-ZrO2 to m-ZrO2. CaZrO3 likely forms from the reaction between CaO and m-ZrO2. As the exposure time increases, more CaZrO3 is observed in the internal region of YSZ, which could be attributed to the inward diffusion of molten salt and outward diffusion of the stabilizer (Y2O3) through the pores. This results in greater susceptibility to phase transformation and CaZrO3 formation. To use SOM anodes for the electroreduction of various metals, YSZ stability must be improved by adjusting the high-density in the forming process.
Keywords
high-temperature stability; yttria stabilized zirconia; solid oxide membrane; degradation; molten salt;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Aytimur, I. Uslu, S. Kocyigit and F. Ozcan, Ceram. Int., 38, 3851 (2012).   DOI
2 A. E. McHale, Phase Diagrams for Ceramists Annual 91/Phan91, 146, J Am Ceram Soc, inc. Westervile, USA (1991).
3 J. Milshtein, E. Gratz, S. Pati, A. C. Powell and U. B. Pal, J. Min. Metall. B Metall., 49 B, 183 (2013).
4 R. O. Suzuki, J. Phys. Chem. Solids, 66, 461 (2005).   DOI
5 D. T. L. Alexander, C. Schwandt and D. J. Fray, Acta Mater., 54, 29334 (2006).
6 O. Takeda, T. H. Okabe, Metall. Mater. Trans. B, 1, 160 (2014).
7 K. M. S. Chowdhury, S. A. Akbar, S. Kapileshwar and J. R. Schorr, J. Electrochem. Soc., 148, 146 (2001).
8 U. B. Pal, D. E. Woolley and G. B. Kenney, JOM, 53, 32 (2001).
9 K. Ajay, Thesis (Ph.D.), Boston University, Boston (2006).
10 S. Li, X. Zou, K. Zheng, X. Lu, Q. Xu, C. Chen and Z. Zhou, J. Alloys Compd., 727, 1243 (2017).   DOI
11 U. B. Pal and A. C. Powell, JOM, 59, 44 (2007).
12 X. Lu, X. Zou, C. Li, Q. Zhong, W. Ding and Z. Zhou, Metall. Mater. Trans. B, 43, 503 (2012).   DOI
13 X. Zou, X. Lu, C. Li and Z. Zhou, Electrochim Acta, 55, 5173 (2010).   DOI
14 S. Das, JOM, 60, 63 (2008).   DOI
15 A. Krishnan, X. G. Lu and U. B. Pal, Metall. Mater. Trans. B, 36, 463 (2005).   DOI
16 S. Selvasekarapandian, M. S. Bhuvaneswari, M. Vijayakumar, C. S. Ramya and P. C. Angelo, J. Eur. Ceram. Soc., 25, 2573 (2005).   DOI
17 D. J. L. Brett, A. Atkinson, N. P. Brandon and S. J. Skinner, Chem. Soc. Rev., 37, 1568 (2008).   DOI
18 Y. M. Gao, B. Wang, S. B. Wang and S. Peng, J. Min. Metall. B Metall., 49 B, 49 (2013).
19 X. Zou, X. Lu, Z. Zhou, C. Li and W. Ding, Electrochim. Acta, 56, 8430 (2011).   DOI
20 B. Zhao, X. Lu, Q. Zhong, C. Li and S. Chen, Electrochim. Acta, 55, 2996 (2010).   DOI
21 S. C. Kwon, S. H. Cho, Hayk H. Nersisyan, J. H. Lee, J. S. Kang and J. H. Lee, Am. Ceram. Soc., 101, 2074 (2018).   DOI
22 U. B. Pal, JOM, 60, 43 (2008).   DOI
23 A. Martin, D. Lambertin, J. -C. Poignet, M. Allibert, G. Bourges, L. Pescayre and J. Fouletier, JOM, 55, 52 (2003).
24 B. U. Yoo, S. C. Kwon, S. H. Cho, Hayk H. Nersisyan and J. H. Lee, J. Alloys Compd., 771, 924 (2019).   DOI
25 X. Guan and U. B. Pal, Prog. Nat. Sci. Mater., 25, 591 (2015).   DOI
26 X. Su, X. G. Lu, C. H. Li, W. Z. Ding, X. L. Zou, Y. H. Gao and Q. D. Zhong, Int. J. Hydrogen Energy, 36, 4573 (2011).   DOI
27 G. Z. Chen, D. J. Fray and T. W. Farthing, Nature, 407, 361 (2000).   DOI
28 M. Suput, R. Delucas, S. Pati, G. Ye, U. Pal and A. C. Powell, Miner. Process Extract Metall., 117, 118 (2008).   DOI
29 R. Gemmen, H. Abernathny, K. Gerdes, M. Koslowske, W. McPhee and T. Tao, Fundamentals of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC) Operation, in: P. Bansal, P. Singh, D. Singh, J. Salem (Eds), Ceramic Engineering and Science Proceedings, Wiley and Sons, Hoboken, NJ, p. 37-46 (2009).
30 C. J. Stournaras, A. Tsetsekou, T. Zambetakis, C. G. Kontoyannis and G. Carountzos, J. Mater. Sci., 30, 4375 (1995).   DOI
31 C. G. Kontoyannis, G. Carountzos, C. J. Stournaras and A. Tsetsekou, J. Mater. Sci. Lett., 15, 222 (1996).   DOI
32 A. Martin, J. C. Poignet, J. Fouletier, M. Allibert, D. Lambertin and G. Bourges, J. Appl. Electrochem., 40, 533 (2010).   DOI
33 E. S. Gratz, J. D. Milshtein and U. Pal, J. Am. Ceram. Soc., 96, 3279 (2013).   DOI
34 J. Xu, B. Lo, Y. Jiang, U. Pal and S. Basu, J. Eur. Ceram. Soc., 34, 3887 (2014).   DOI
35 E. S. Gratz, J. D. Milshtein and U. B. Pal, J. Am. Ceram. Soc., 96, 3279 (2013).   DOI
36 R. P. Ingel and D. Lewis III, J. Am. Ceram. Soc., 69, 325 (1986).   DOI
37 A. P. Raheleh, S. R. Reza, M. Reza and J. Hossein, Ceram. Int., 38, 6613 (2012).   DOI
38 Z. Xu, L. He, R. Mu, S. He, G. Huang and X. Cao, Surf. Coat. Technol., 204, 3652 (2010).   DOI