DOI QR코드

DOI QR Code

A Study on Crack of Hydrogen Filling Pressure Vessel Using Finite Element Method

유한요소법을 이용한 수소충전용 압력용기의 균열에 관한 연구

  • Ha Young Choi (Department of Mechanical Engineering, Dongyang Mirae University) ;
  • Sung Kwang Byon (Department of Mechanical Engineering, Dongyang Mirae University) ;
  • Seunghyun Cho (Department of Mechanical Engineering, Dongyang Mirae University)
  • 최하영 (동양미래대학교 기계공학부) ;
  • 변성광 (동양미래대학교 기계공학부) ;
  • 조승현 (동양미래대학교 기계공학부)
  • Received : 2023.06.05
  • Accepted : 2023.09.23
  • Published : 2023.09.30

Abstract

As the number of hydrogen filling stations for hydrogen supply increases with the progress of low-carbon eco-friendly energy policies, the risk of accidents is also increasing. Actual pressure vessels may have defects such as notches, pores, and inclusions that may occur during the manufacturing process. Therefore, it is necessary to evaluate the integrity of pressure vessels in the case where cracks exist in pressure vessels under internal pressure. In this paper, 3D finite element analysis was used to evaluate the structural safety of hydrogen-filled pressure vessels with surface cracks, and the shape of surface cracks was compared with the commonly used semi-elliptical shape. In the future, these results will be used to predict the remaining life of the pressure vessel in consideration of fracture mechanics.

저탄소 친환경에너지 정책이 진행으로 인해 수소 공급을 위한 수소충전소의 증가됨에 따라 사고발생 위험도 커지고 있다. 실제 압력용기는 제조과정에서 발생할 수 있는 노치와 기공, 개재물 등의 결함이 존재할 수 있다. 따라서 내압이 작용하고 있는 압력용기에 균열이 존재할 경우에 대한 압력용기의 건전성을 평가하는 것은 필요하다. 본 연구에서는 표면균열이 있는 수소충전용 압력용기의 구조안전성을 평가하기 위해 3차원 유한요소해석을 이용하였으며, 표면균열의 형상은 일반적으로 많이 사용되는 반타원 형상을 적용하여 균열의 형상 및 응력비에 대한 균열진전 특성을 비교하였다. 향후, 이러한 결과를 이용하여 파괴역학을 고려한 압력용기의 잔존수명 예측에 활용할 예정이다.

Keywords

Acknowledgement

본 연구는 2023년도 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 연구비 지원으로 수행되었으며, 지원에 감사를 드립니다(NO. 20215810100040).

References

  1. Lee, B., Lee, H., Moon, C., Moon, S., and Lim, H., "Preliminary Economic Analysis for H2 Transportation Using Liquid Organic H 2 Carrier to Enter H2 Economy Society in Korea". Transactions of the Korean hydrogen and new energy society, 30(2), 119-127, (2019)
  2. Kim, C. K. and Cho, S. H., "FE Analysis on the Design Safety of Inner Tank Bottom Plate in Terms of Cryogenic Temperature Loadings", KIGAS, 8(3), 8-15, (2004)
  3. Kim C.K., Cho S. H., Suh H. S., Hong S. H., Lee S.R., Kim Y.G., and Kwon B.G., "On the Leakage Safety Analysis of 9% Nickel Type LNG Storage Tank with Thermal Resistance Effects", KIGAS, 9(1), 1-9, (2005)
  4. Lin, X. B., Smith, R. A. An improved numerical tech- nique for simulating the growth of planar fatigue cracks. Fatigue Fract. Engng Mater. Structs, 20, 1363-1373, (1997) https://doi.org/10.1111/j.1460-2695.1997.tb01495.x
  5. Musthaf, M. "Failure Prediction of Cracked Pressure Vessel under Fatigue Load Based on API 579 Standard and Finite Element Method", Science and Engineering, 37, (2016)
  6. O'donoghue, P. E., Nishioka, T., and Atluri, S. N., "Multiple surface cracks in pressure vessels", Engineering Fracture Mechanics, 20(3), 545-560, (1984) https://doi.org/10.1016/0013-7944(84)90059-6
  7. Sims, J. R. "Standards and codes to control hydrogen-induced cracking in pressure vessels and pipes for hydrogen gas storage and transport" Gaseous hydrogen embrittlement of materials in energy technologies, Woodhead Publishing, 177-192, (2012)
  8. San Marchi, C., Somerday, B. P., & Nibur, K. A., "Development of methods for evaluating hydrogen compatibility and suitability", International journal of hydrogen energy, 39(35), 20434-20439, (2014) https://doi.org/10.1016/j.ijhydene.2014.03.234
  9. Irwin, G.R., "Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate," Journal of Applied Mechanics, 24, 361-364, (1957) https://doi.org/10.1115/1.4011547
  10. J. R. Rice, A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks, Journal of Applied Mechanics, 35, 379-386, (1968) https://doi.org/10.1115/1.3601206
  11. ASME Section VIII, Division 3, Code 2019 Edition, "Alternate Rules for Construction of High Pressure Vessels", ASME New York 10016 USA.
  12. KGS AC111, Facility/Technical/Inspection Code for Manufacture of Storage Tanks and Pressure Vessels for High-pressure Gases, South Korea, (2023)
  13. San Marchi, C., Ronevich, J., Bortot, P., Wada, Y., Felbaum, J., & Rana, M., "Technical Basis for Master Curve for Fatigue Crack Growth of Ferritic Steels in High-Pressure Gaseous Hydrogen in ASME Section VIII-3 Code," In Pressure Vessels and Piping Conference, 58929, American Society of Mechanical Engineers, (2019)