• Title/Summary/Keyword: internal hole

Search Result 195, Processing Time 0.02 seconds

A Study on the Creep Characteristics of QFP Solder Joints (QFP 솔더접합부의 크립특성에 관한 연구)

  • Cho, Yun-Sung;Cho, Myung-Gi;Kim, Jong-Min;Lee, Seong-Hyuk;Shin, Young-Eui
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.151-156
    • /
    • 2007
  • In this paper, the creep characteristics of lead and lead-free solder joint were investigated using the QFP(Quad Flat Package) creep test. Two kind of solder pastes(Sn-3Ag-0.5Cu, Sn-0.2Sb-0.4Ag-37.4Pb) were applied to the QFP solder joints and each specimen was checked the external and internal failures(i.e., wetting failure, void, pin hole, poor-heel fillet) by digital microscope and X-ray inspection. The creep test was conducted at the temperatures of $100^{\circ}C$ and $130^{\circ}C$ under the load of 15$\sim$20% of average pull strength in solder joints. The creep characteristics of each solder joints were compared using the creep strain-time curve and creep strain rate-stress curves. Through the comparison, the Sn-3Ag-0.5Cu solder joints have higher creep resistance than that of Sn-0.3Sb-0.4Ag-37.4Pb. Also, the grain boundary sliding in the fracture surface and the necking of solder joint were observed by FE-SEM.

The Characteristics of Fatigue Cracks Emanating from Micro Hole Defects Located Opposite Position of the Shaft Cross Section (축 단면 내 대칭 위치의 미소 원공 결함에서 발생한 피로균열 특징)

  • Song, Sam-Hong;Bae, Jun-Su;Ahn, Il-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.211-216
    • /
    • 2001
  • The components with the circular cross section have the symmetric combination parts for rotating balance and the crack emanates from the symmetric combination parts. The symmetric cracks from symmetric combination parts make a decrease in the component fatigue life more than single crack. In this study, to estimate the behavior of symmetric cracks, the fatigue test was performed using rotary bending tester on the specimen with a symmetric defects in circular cross section. The material used in this study is Ni-Cr-Mo steel alloy. Under the same stress, the result from the rotary bending fatigue test turned out that the symmetric cracks made a decrease in the fatigue life by 35% more than single crack and the relation between log a and cycle ratio $N/N_f$ obtained linearly.

  • PDF

A Study on the Governing Factor of Fatigue Limit in Austempered Ductile Iron (오스템퍼링 구상흑연주철의 피로한도 지배인자에 관한 연구)

  • 정회원;김진학
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.221-229
    • /
    • 1999
  • We examined the governing factors of fatigue limit in annealed and austempered ductile iron specimens machined micro hole(dia.<0.4mm) in rotary bending fatigue test. Also, the quantitative relationship between fatigue limit and maximum defect size in specimens was investigated. Artificial defect(micro-pit type, dia.<0.4mm) on specimen surface did not bring about an obvious reduction of fatigue limit in austempered ductile iton(ADI) as compared with annealed ductile iron. According to the investigation of ${\sqrt{area}}_c$ which is the critical defect size to crack initiation at artificial defect, ${\sqrt{area}}_c$ of ADI was larger than that of annealed ductile iron. This shows that the situation of crack initiation at artificial defect in ADI is more difficult in comparison with annealed ductile iron. Maximum defect size is one of the important parameters to predict fatigue limit. And, the quantitative relationship, between the fatigue limit ${\sigma}_{\omega}$ and the maximum defect size ${\sqrt{area}}_{max}$ can be expressed to ${\sigma}_{\omega}^n{\cdot}{\sqrt{area}}_{max}=C_2$ where, $C_2$ are constant. Moreover, it is possible to explain the difference in fatigue limit between, austempered and annealed ductile iron by introducing the parameter ${\delta}(=N_{sg}/N_{total})$in a plain spectimen.

  • PDF

An Experimental Study on RCCI(Reactivity Controlled Compression Ignition) Combustion of Dual-fuel due to Injector Characteristics (인젝터 특성에 따른 2중 연료의 RCCI 연소에 관한 실험적 연구)

  • Sung, Ki-An
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.110-115
    • /
    • 2012
  • This study describes the characteristics of combustion and exhaust emission in the special engine applying a fuel reactivity controlled compression ignition (RCCI) concept with two different energizing type (solenoid and piezoelectric) injectors for diesel injection. A diesel-gasoline mixed dual-fuel reactivity controlled compression ignition concept is demonstrated as a promising method to achieve high thermal efficiency and low emission in internal combustion engines for transportation vehicles. For investigating the combustion characteristics of RCCI, engine experiments were performed in a light-duty diesel engine over a range of injection timing and mixing rate of gasoline in mass. It was investigated that by increasing the nozzle hole diameter, increasing the combustion pressure and the net indicated mean effective pressure. $NO_x$ and soot can be reduced by advancing start of injection in 84 mixing rate of gasoline in mass. The resulting operation showed that light duty engine could achieve 48 percent net indicated efficiency and 191[g/kW-hr] net indicated specific fuel consumption with lower levels of nitrogen oxides and soot.

Analysis of Sensitivity Characteristics with AMESim Model for Piezo Injector (AMESim기반 피에조 인젝터용 해석모델의 민감도 특성 해석)

  • Jo, Insu;Kwon, Jiwon;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.17-25
    • /
    • 2013
  • Performance of DI diesel engine with high fuel injection method is directly related to the emission characteristics and fuel consumption. At present, diesel injection system with piezo element is replacing conventional solenoid type due to their faster electro-mechanical properties. In this study, it was investigated the sensitivity characteristics regarding internal hydraulic modeling based on the AMESim environment of piezo-driven injector The analytic parameter for this study defined such as In/Out orifice, injection hole's diameter and driven voltage on piezo stack. As the results, it was shown that these parameter influence on a fast response characteristics of piezo-driven injector. Also we found fuel pressure recovery time is faster about 0.1 ms due to larger IN orifice diameter. And larger OUT orifice diameter occurs maximum pressure drop with faster its timing of about 0.2 ms.

Analysis of Stress-Induced Effect in Blue GaN-Based Light-Emitting Diodes (질화갈륨 기반 청색 고체 발광 다이오드에서의 스트레스 영향 해석)

  • Shim, Sang Kyun;Lee, June Key;Kim, Youngman
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.444-447
    • /
    • 2019
  • It was proven that the light outputs of blue GaN-based light-emitting diodes (LEDs) was seriously influenced by the application of external stress. We have simulated the wave function overlap of an electron and hole, which are significantly reduced by the development of stress. Consequently, its internal quantum efficiency decreased from 67.0% to 37.5%. To experimentally investigate the effect of stress, we designed and prepared a special zig system. By applying external tensile stress to compensate for the compressive stress innately developed in Blue LEDs, it was found that the optical output was greatly enhanced from 83.1 mcd to 117.2 mcd at a current of 100 mA, an increase of approximately 41%. In contrast, when the compressive stress is developed more by external compressive stress, we observed that the light output power was reduced from 89.0 mcd to 80.7 mcd, a decrease of approximately 9.3%.

Three-dimensional numerical modeling of effect of bedding layer on the tensile failure behavior in hollow disc models using Particle Flow Code (PFC3D)

  • Sarfarazi, Vahab;Haeri, Hadi
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.537-547
    • /
    • 2018
  • This research presents the effect of anisotropy of the hollow disc mode under Brazilian test using PFC3D. The Brazilian tensile strength test was performed on the hollow disc specimens containing the bedding layers and then these specimens were numerically modeled by using the two dimensional discrete element code (PFC3D) to calibrate this computer code for the simulation of the cracks propagation and cracks coalescence in the anisotropic bedded rocks. The thickness of each layer within the specimens varied as 5 mm, 10 mm and 20 mm and the layers angles were changed as $0^{\circ}$, $25^{\circ}$, $50^{\circ}$, $75^{\circ}$ and $90^{\circ}$. The diameter of internal hole was taken as 15 mm and the loading rate during the testing process kept as 0.016 mm/s. It has been shown that for layers angles below $25^{\circ}$ the tensile cracks produce in between the layers and extend toward the model boundary till interact and break the specimen. The failure process of the specimen may enhance as the layer angle increases so that the Brazilian tensile strength reaches to its minimum value when the bedding layers is between $50^{\circ}$ and $75^{\circ}$ but its value reaches to maximum at a layer angle of $90^{\circ}$. The number of tensile cracks decreases as the layers thickness increases and with increasing the layers angle, less layer mobilize in the failure process.

Analytical Study on Unsteady Flow Characteristics of Urea-SCR Single Hole Injector depend on Nozzle Shape Change (Urea-SCR 단홀 Injector 노즐형상 변화에 따른 비정상유동특성의 해석적 연구)

  • Hwang, Jun Hwan;Park, Sung-Young
    • Journal of ILASS-Korea
    • /
    • v.24 no.3
    • /
    • pp.105-113
    • /
    • 2019
  • In this paper, a study of Urea-SCR System for Dosing Injector for responding to enhanced environmental regulations has been conducted. There is a limit to the experimental approach due to the structural characteristics of the injector. In order to overcome this problem, The analysis was performed assuming unsteady turbulent flow through computational fluid analysis and the internal flow characteristics of the injector were analyzed. By changing the nozzle shape of the injector, the performance factors of the swirl injector by shape were selected and compared. The design parameters were modified by changing the diameter of the nozzle at a constant ratio compared to the base model. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. The Conv. model to which the taper was applied showed the dominance in mass flow rate, discharge coefficient and swirl because of the smooth fluid flow by shape. Swirl coefficient, outlet mass flow, and sac volume were selected as performance parameters of the injector. As a result of the comparison coefficient derivation with those performance parameters for comparing the performance of the model-specific injector, the Conv-140 model with the nozzle diameter expanded by 140% showed the best value of the comparison coefficient.

Effects of Embeddedness and Structural Holes on Innovation Performance: The Moderating Role of Environmental Uncertainty

  • Minjung KIM
    • The Journal of Industrial Distribution & Business
    • /
    • v.14 no.7
    • /
    • pp.9-18
    • /
    • 2023
  • Purpose: The ability of a firm to acquire resources through marketing networks is crucial for its competitiveness. Nonetheless, the influence of these networks on the performance of a firm's innovation is still uncertain, particularly in the face of environmental uncertainty. This research investigates the impact of marketing networks, specifically network embeddedness and structural holes, on the performance of innovation in situations characterized by environmental uncertainty. Research design, data and methodology: The empirical examination was carried out within the framework of internal network entities, specifically the manufacturer-supplier-sub supplier relationships, involving the primary suppliers of a Korean engineering firm. Construct measures utilized in this study were derived from existing measures and prior research. A questionnaire survey was conducted with a major first-tier supplier of a Korean engineering firm. Proposed hypotheses were tested using structural equation modeling. Results: The survey findings suggest that only network embeddedness has an impact on the perception of major first-tier suppliers regarding the buyer's innovation performance. Conclusions: To strengthen the empirical evidence regarding the effects of marketing networks on innovation performance, future research should take into account cultural factors such as collectivism, which is indicative of the distinctive business-to-business marketing relationships observed in the Korean context.

The Relative Role of Bars and Galaxy Environments in AGN Triggering of SDSS Spirals

  • Choi, Yun-Young;Kim, Minbae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.31.3-32
    • /
    • 2021
  • We quantify the relative role of galaxy environment and bar presence on AGN triggering in face-on spiral galaxies using a volume-limited sample with 0.02 < z < 0.055, Mr < 19.5, and σ > 70 km s-1 selected from Sloan Digital Sky Survey (SDSS) Data Release 7. To separate their possible entangled effects, we divide the sample into bar and non-bar samples, and each sample is further divided into three environment cases of isolated galaxies, interacting galaxies with a pair, and cluster galaxies. The isolated case is used as a control sample. For these six cases, we measure AGN fractions at a fixed central star formation rate and central velocity dispersion, σ. We demonstrate that the internal process of the bar-induced gas inflow is more efficient in AGN triggering than the external mechanism of the galaxy interactions in groups and cluster outskirts. The significant effects of bar instability and galaxy environments are found in galaxies with a relatively less massive bulge. We conclude that from the perspective of AGN-galaxy coevolution, a massive black hole is one of the key drivers of spiral galaxy evolution. If it is not met, a bar instability helps the evolution, and in the absence of bars, galaxy interactions/mergers become important. In other words, in the presence of a massive central engine, the role of the two gas inflow mechanisms is reduced or almost disappears. We also find that bars in massive galaxies are very decisive in increasing AGN fractions when the host galaxies are inside clusters.

  • PDF