Browse > Article
http://dx.doi.org/10.12989/sem.2018.68.5.537

Three-dimensional numerical modeling of effect of bedding layer on the tensile failure behavior in hollow disc models using Particle Flow Code (PFC3D)  

Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology)
Haeri, Hadi (Young Researchers and Elite Club, Bafgh Branch, Islamic Azad University)
Publication Information
Structural Engineering and Mechanics / v.68, no.5, 2018 , pp. 537-547 More about this Journal
Abstract
This research presents the effect of anisotropy of the hollow disc mode under Brazilian test using PFC3D. The Brazilian tensile strength test was performed on the hollow disc specimens containing the bedding layers and then these specimens were numerically modeled by using the two dimensional discrete element code (PFC3D) to calibrate this computer code for the simulation of the cracks propagation and cracks coalescence in the anisotropic bedded rocks. The thickness of each layer within the specimens varied as 5 mm, 10 mm and 20 mm and the layers angles were changed as $0^{\circ}$, $25^{\circ}$, $50^{\circ}$, $75^{\circ}$ and $90^{\circ}$. The diameter of internal hole was taken as 15 mm and the loading rate during the testing process kept as 0.016 mm/s. It has been shown that for layers angles below $25^{\circ}$ the tensile cracks produce in between the layers and extend toward the model boundary till interact and break the specimen. The failure process of the specimen may enhance as the layer angle increases so that the Brazilian tensile strength reaches to its minimum value when the bedding layers is between $50^{\circ}$ and $75^{\circ}$ but its value reaches to maximum at a layer angle of $90^{\circ}$. The number of tensile cracks decreases as the layers thickness increases and with increasing the layers angle, less layer mobilize in the failure process.
Keywords
bedding layer; Brazilian test; anisotropy; crack; PFC3D;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Li, Y., Zhou, H., Zhu, W., Li, S. and Liu, J. (2015), "Numerical study on crack propagation in brittle jointed rock mass influenced by fracture water pressure", Mater., 8(6), 3364-3376.   DOI
2 Liu, X., Nie, Z., Wu, S. and Wang, C. (2015), "Self-monitoring application of conductive asphalt concrete under indirect tensile deformation", Case Stud. Constr. Mater., 3, 70-77.   DOI
3 Lu, F.Y., Lin, Y.L., Wang, X.Y., Lu, L. and Chen, R. (2015), "A theoretical analysis about the influence of interfacial friction in SHPB tests", Int. J. Imp. Eng., 79, 95-101.   DOI
4 McLamore, R. and Gray, K.E. (1967), "The mechanical behavior of transversely isotropic sedimentary rocks", Trans. Am. Soc. Mech. Eng. Ser. B, 62-76.
5 Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Back calculation of residual tensile strength of regular and high performance fiber reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253.   DOI
6 Mohammad, A. (2016), "Statistical flexural toughness modelling of ultra-high performance mortar using response surface method", Comput. Mortar, 17(4), 33-39.
7 Najigivi, A., Nazerigivi, A. and Nejati, H.R. (2017), "Contribution of steel fiber as reinforcement to the properties of cement-based concrete: A review", Comput. Concrete, 20(2), 155-164.   DOI
8 Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measure., 82, 421-431.
9 Nasseri, M.H., Rao, K.S. and Ramamurthy, T. (1997), "Failure mechanism in schistose rocks", Int. J. Rock Mech. Min. Sci., 34(3-4), 219 .
10 Nasseri, M.H.B., Rao, K.S. and Ramamurthy, T. (2003), "Anisotropic strength and deformational behavior of Himalayan schists", Int. J. Rock Mech. Min. Sci., 40(1), 3-33.   DOI
11 Akbas, S. (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 66-78.
12 Al-Harthi, A.A. (1998), "Effect of planar structures on the anisotropy of ranyah sandstone, Saudi Arabia", Eng. Geol., 50, 49-57.   DOI
13 Amadei, B. (1996), "Importance of anisotropy when estimating and measuring in situ stresses in rock", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 33(3), 293-325 .   DOI
14 Amadei, B. "The influence of rock anisotropy on measurement of stresses in- situ", Ph.D. Dissertation.
15 Amadei, B. and Rogers, J.D. (1983), "Goodman RE. Elastic constants and tensile strength of anisotropic rocks", Proceedings of the 5th International Congress of Rock Mechanics, 89-96.
16 Barla, G. (1974), "Rock anisotropy: Theory and laboratory testing", Rock Mech., 131-169
17 Berenbaum, R. and Brodie, I. (1959), "The tensile strength of coal", J. Inst. Fuel., 32(222), 320-326.
18 Chen, C.S., Pan, E. Amadei, B. (1998), "Determination strength of anisotropic Brazilian tests of deformability and tensile rock using", Int. J. Rock Mech. Min. Sci., 35(1), 43-61.   DOI
19 Cho, N., Martin, C.D. and Sego, D.C. (2007), "A clumped particle model for rock", Int. J. Rock Mech. Min. Sci., 44, 997-1010.   DOI
20 Cho, N., Martin, C.D. and Sego, D.C. (2008), "Development of a shear zone in brittle rock subjected to direct shear", Int. J. Rock Mech. Min. Sci., 45, 1335-1346.   DOI
21 Nazerigivi, A., Nejati, H.R., Ghazvinian, A. and Najigivi, A. (2018), "Effects of $SiO_2$ nanoparticles dispersion on concrete fracture toughness", Constr. Build. Mater., 171, 672-679.   DOI
22 Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398.   DOI
23 Oliveira, H.L. and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Analy. Bound. Elem., 41, 74-82.   DOI
24 Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement mortar pavement", Struct. Eng. Mech., 52(4), 167-181.
25 Pinto, J.L. (1966), "Stresses and strains in anisotropic orthotropic body", Proceedings of the 1st International Congress of Rock Mechanics, Lisbon, Portugal.
26 Pinto, J.L. (1970), "Deformability of schistous rocks", Proceedings of the 2nd International Congress of Rock Mechanics, 2-30 .
27 Pinto, J.L. (1979), "Determination of the elastic constants of anisotropic bodies by diametral compression tests", Proceedings of the 4th International Congress of Rock Mechanics, 359-363 .
28 Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364.   DOI
29 Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials", Struct. Eng. Mech., 58(2), 144-156.
30 Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high-performance steel fiber reinforced mortar in compression", Comput. Mortar, 11(2), 55-65.
31 Fan, Y., Zhu, Z., Kang, J. and Fu, Y. (2016), "The mutual effects between two unequal collinear cracks under compression", Math. Mech. Sol., 22, 1205-1218.
32 Chou, Y.C. and Chen, C.S. (2008), "Determining elastic constants of transversely isotropic rocks using Brazilian test and iterative procedure", Int. J. Numer. Analy. Meth. Geomech., 32(3), 219-234.   DOI
33 Debecker, B. and Vervoort, A. (2009), "Experimental observation of fracture patterns in layered slate", Int. J. Fract., 159, 51-62.   DOI
34 Exadaktylos, G.E. and Kaklis, K.N. (2001), "Applications of an explicit solution for the transversely isotropic circular disc compressed diametrically", Int. J. Rock Mech. Min. Sci., 38(2), 227-243.   DOI
35 Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Stud. Constr. Mater., 3, 83-91.   DOI
36 Goodman, R.E. (1993), Engineering Geology-Rock in Engineering Construction, John Wiley and Sons, Inc., New York, U.S.A.
37 Haeri, H. (2016), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(5), 1062-1106.
38 Haeri, H. (2015a), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623.   DOI
39 Haeri, H. (2015b), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(3), 487-496.   DOI
40 Haeri, H. (2015c), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16, 605-623.   DOI
41 Haeri, H. and Sarfarazi, V. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737.   DOI
42 Salamon, M.D.G. (1968), "Elastic moduli of a stratified rock mass", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 5(6), 519-532.   DOI
43 Ramamurthy, T. (1993), Strength, Modulus Responses of Anisotropic Rocks. In: Hudson JA, Editor, Comprehensive rock engineering, Oxford, Pergamon Press, 1, 313-329.
44 Rodrigues, G. (1966), "Anisotropy of granites: Modulus of elasticity and ultimate strength ellipsoids, joint systems, slope attitudes, and their correlations", Proceedings of the 1st International Congress of Rock Mechanics, Lisbon, Portugal.
45 Saeidi, O., Rasouli, V., GeranmayehVaneghi, R., Gholami, R. and Torabi, R. (2013), "A modified failure criterion for transversely isotropic rocks", Geosci. Front.
46 Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498.   DOI
47 Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical Simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371.   DOI
48 Singh, J., Ramamurth, T. and Venkatappa, R.G. (1989), "Strength anisotropies in rocks", Ind. Geotech. J., 19(2), 147-166.
49 Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panels-experiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 323-341.   DOI
50 Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensile strength behavior of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118.   DOI
51 Tavallali, A. and Vervoort, A. (2010), "Effect of layer orientation on the failure of layered sand stone under Brazilian test conditions", Int. J. Rock Mech. Min. Sci., 47, 313-322.   DOI
52 Tien, Y.M. and Kuo, M.C. (2006), "An experimental investigation of the failure mechanism of simulated transversely isotropic rocks", Int. J. Rock Mech. Min. Sci., 43, 1163-1181.   DOI
53 Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sinic., 31(6), 855-870.   DOI
54 Haeri, H., Khaloo, A. and Marji, M.F. (2015c), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7297-7308.   DOI
55 Haeri, H., Sarfarazi, V. and Hedayat, A. (2016a), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952.   DOI
56 Tavallali, A. and Vervoort, A. (2010), "Failure of layered sandstone under Brazilian test conditions: Effect of micro-scale parameters on macro-scale behavior", Rock Mech. Rock Eng., 43, 641-645.   DOI
57 Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates pre-saturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156.   DOI
58 Tien, Y.M. and Tsao, PF. (2000), "Preparation and mechanical properties of artificial transversely isotropic rock", Int. J. Rock Mech. Min. Sci., 37(6), 1001-1012 .   DOI
59 Wan Ibrahim, M.H., Hamzah, A.F., Jamaluddin, N., Ramadhansyah, P.J. and Fadzil, A.M. (2015), "Split tensile strength on self-compacting concrete containing coal bottom ash", Proc.-Soc. Behav. Sci., 198, 2280-2289.
60 Haeri, H., Sarfarazi, V. and Lazemi, H. (2016b), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653.   DOI
61 Haeri, H., Sarfarazi, V., Fatehi, M., Hedayat, A. and Zhu, Z. (2016c), "Experimental and numerical study of shear fracture in brittle materials with interference of initial double", Acta Mech. Soild. Sinic., 5, 555-566.
62 Haeri, H., Shahriar, K. and Marji, M.F. (2013), "Modeling the propagation mechanism of two random micro cracks in rock samples under uniform tensile loading,", Proceedings of the ICF13.
63 Haeri, H., Shahriar, K., Fatehi Marji, M. and Moarefvand, P. (2014), "On the crack propagation analysis of rock like Brazilian disc specimens containing cracks under compressive line loading", Lat. Am. J. Sol. Struct., 11(8), 1400-1416.   DOI
64 Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754.   DOI
65 Hobbs, D.W. (1963), "The strength and stress-strain characteristics of coal in triaxial compression", J. Geol., 72, 214-223.
66 Hoek, E. (1964), "Fracture of transversely isotropic rock", J. S. Afr. Inst. Min. Met., 64, 501-518.
67 Yaylac, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 44-57.
68 Wang, Q.Z., Feng, F., Ni, M. and Gou, X.P. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469.   DOI
69 Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181, 52-64.   DOI
70 Wu, Z.J., Ngai, L. and Wong, Y. (2014), "Investigating the effects of micro-defects on the dynamic properties of rock using numerical Manifold method", Constr. Build. Mater., 72, 72-82.   DOI
71 Kim, H.M., Lee, J.W., Yazdani, M., Tohidi, E., Nejati, H.R. and Park, E.S. (2018), "Coupled viscous fluid flow and joint deformation analysis for grout injection in a rock joint", Rock Mech. Rock Eng., 51(2), 627-638.   DOI
72 Horino, F.G. and Ellickson, M.L. (1970), A Method of Estimating Strength of Rock Containing Plnes of Weakness, Report of Investigation 744, US Bureau of Mines.
73 Zhang, Q.B. and Zhao, J. (2014), "Quasi-static and dynamic fracture behavior of rock materials: Phenomena and mechanisms", Int. J. Fract., 189, 1-32.   DOI
74 Zhao, Y., Zhao, G.F. and Jiang, Y. (2013), "Experimental and numerical modeling investigation on fracturing in coal under impact loads", Int. J. Fract., 183(1), 63-80.   DOI
75 Imani, M., Nejati, H.R. and Goshtasbi, K. (2017), "Dynamic response and failure mechanism of Brazilian disk specimens at high strain rate", Soil Dyn. Earthq. Eng., 100, 261-269.   DOI
76 Itasca Consulting Group Inc. (2004), Particle Flow Code in 2-Dimensions (PFC2D), Version 3.10, Minneapolis.
77 Kequan, Y.U. and Zhoudao, L.U. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normal-strength mortar", Comput. Mortar, 15(2), 102-111.
78 Khodayar, A. and Nejati, H.R. (2018), "Effect of thermal-induced microcracks on the failure mechanism of rock specimens", Comput. Concrete, 22(1), 93-100.   DOI
79 Kwasniewski, M. (1993), Mechanical Behavior of Transversely Isotropic Rocks, In: Hudson JA (ed) Comprehensive Rock Engineering, Pergamon, Oxford, 1, 285-312.
80 Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modeling of crack propagation using the semi-circular bending test", Constr. Build. Mater., 48, 270-277.   DOI
81 Lee, S. and Chang, Y. (2015), "Evaluation of RPV according to alternative fracture toughness requirements", Struct. Eng. Mech., 53(6), 14-27.
82 Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measure., 82, 421-431.