• Title/Summary/Keyword: internal calibration

Search Result 221, Processing Time 0.024 seconds

Camera Calibration And Lens of Distortion Model Constitution for Using Artificial Neural Networks (신경망을 이용한 렌즈의 왜곡모델 구성 및 카메라 보정)

  • Kim, Min-Suk;Nam, Chang-Woo;Woo, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2923-2925
    • /
    • 1999
  • The objective of camera calibration is to determine the internal optical characteristics of camera and 3D position and orientation of camera with respect to the real world. Calibration procedure applicable to general purpose cameras and lenses. The general method to revise the accuracy rate of calibration is using mathematical distortion of lens. The effective og calibration show big difference in proportion to distortion of camera lens. In this paper, we propose the method which calibration distortion model by using neural network. The neural network model implicity contains all the distortion model. We can predict the high accuracy of calibration method proposed in this paper. Neural network can set properly the distortion model which has difficulty to estimate exactly in general method. The performance of the proposed neural network approach is compared with the well-known Tsai's two stage method in terms of calibration errors. The results show that the proposed approach gives much more stable and acceptabke calibration error over Tsai's two stage method regardless of camera resolution and camera angle.

  • PDF

On-line sensor calibration for mobile robot (이동 로봇을 위한 온라인 센서 교정 방법)

  • 김성도;유원필;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.527-530
    • /
    • 1996
  • The Kalman filter has been used as a self-localization method for the mobile robot. To satisfy the assumptions inherent in the Kalman filter, we should calibrate the sensors of the robot before use of them. However, it is generally hard to find exact sensor parameters, and the parameters may change during the robot task as the environment varies. Thus we need to perform on-line sensor calibration, by which we can obtain more credible location of the mobile robot. In this paper, we present an on-line sensor calibration scheme which estimates the unknown sensor bias and the current position of the robot. To this end, first we find out the calibration errors of the sensor from redundant sensory data using the parity vector and recursive minimum variance estimation. Then we calculate the current position of the robot by weighted least square estimation without internal encoder data. The performance of the proposed method is evaluated through computer simulation.

  • PDF

A Wide - Range Dual-Loop DLL with Programmable Skew - Calibration Circuitry for Post Package (패키지후 프로그램을 이용 스큐 수정이 가능한 광범위한 잠금 범위를 가지고 있는 이중 연산 DLL 회로)

  • Choi, Sung-Il;Moon, Gyu;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.6
    • /
    • pp.408-420
    • /
    • 2003
  • This paper describes a Delay Locked Loop (DLL) circuit having two advancements : 1) a dual loop operation for a wide lock-range and 2) programmable replica delays using antifuse circuitry and internal voltage generator for a post-package skew calibration. The dual loop operation uses information from the initial time-difference between reference clock and internal clock to select one of the differential internal loops. This increases the lock-range of the DLL to the lower frequency. In addition, incorporation with the programmable replica delay using antifuse circuitry and internal voltage generator allows for the elimination of skews between external clock and internal clock that occur from on and off-chip variations after the package process. The proposed DLL, fabricated on 0.16m process, operates over the wide range of 42MHz - 400MHz with 2.3v power supply. The measured results show 43psec peak-to-peak jitter and 4.71psec ms jitter consuming 52㎽ at 400MHz.

3D reconstruction method without projective distortion from un-calibrated images (비교정 영상으로부터 왜곡을 제거한 3 차원 재구성방법)

  • Kim, Hyung-Ryul;Kim, Ho-Cul;Oh, Jang-Suk;Ku, Ja-Min;Kim, Min-Gi
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.391-394
    • /
    • 2005
  • In this paper, we present an approach that is able to reconstruct 3 dimensional metric models from un-calibrated images acquired by a freely moved camera system. If nothing is known of the calibration of either camera, nor the arrangement of one camera which respect to the other, then the projective reconstruction will have projective distortion which expressed by an arbitrary projective transformation. The distortion on the reconstruction is removed from projection to metric through self-calibration. The self-calibration requires no information about the camera matrices, or information about the scene geometry. Self-calibration is the process of determining internal camera parameters directly from multiply un-calibrated images. Self-calibration avoids the onerous task of calibrating cameras which needs to use special calibration objects. The root of the method is setting a uniquely fixed conic(absolute quadric) in 3D space. And it can make possible to figure out some way from the images. Once absolute quadric is identified, the metric geometry can be computed. We compared reconstruction image from calibrated images with the result by self-calibration method.

  • PDF

The estimation of camera's position and orientation using Hough Transform and Vanishing Point in the road Image (도로영상에서 허프변환과 무한원점을 이용한 카메라 위치 및 자세 추정 알고리즘)

  • Chae, Jung-Soo;Choi, Seong-Gu;Rho, Do-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.511-513
    • /
    • 2004
  • Camera Calibration should certain)y be achieved to take an accurate measurement using image system. Calibration is to prove the relation between an measurement object and camera and to estimate twelve internal and external parameters. In this paper, we suggest that an algorithm should estimate the external parameters from the road image and use a vanishing point's character from parallel straight lines in a space. also, we use Hough Transform to estimate an accurate vanishing point. Hough Transform has one of the advantages which is an application for each road environment. we assume a variety of environments to prove the usability of a suggested algorithm and show simulation results with a computer.

  • PDF

Procedural Geometry Calibration and Color Correction ToolKit for Multiple Cameras (절차적 멀티카메라 기하 및 색상 정보 보정 툴킷)

  • Kang, Hoonjong;Jo, Dongsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.615-618
    • /
    • 2021
  • Recently, 3D reconstruction of real objects with multi-cameras has been widely used for many services such as VR/AR, motion capture, and plenoptic video generation. For accurate 3D reconstruction, geometry and color matching between multiple cameras will be needed. However, previous calibration and correction methods for geometry (internal and external parameters) and color (intensity) correction is difficult for non-majors to perform manually. In this paper, we propose a toolkit with procedural geometry calibration and color correction among cameras with different positions and types. Our toolkit consists of an easy user interface and turned out to be effective in setting up multi-cameras for reconstruction.

A Noise Re-radiation Calibration Technique in Interferometric Synthetic Aperture Radiometer for Sub-Y-type Array at Ka-Band

  • Seo Seungwon;Kim Sunghyun;Choi Junho;Park Hyuk;Lee Hojin;Kim Yonghoon;Kang Gumsil
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.577-580
    • /
    • 2004
  • To overcome with large size noise source distribution network design difficulty in interferometric radiometer system, especially for sub-Y-type array, a new on-board calibration technique using noise re-radiation is proposed in this paper. The suggested calibration technique is using noise re-radiation effect of center antenna after noise source injection from matched load. This approach is especially proper to sub-Y-type array interferometric synthetic aperture radiometer in mm-wave frequency band. Compared with noise injection network of a conventional synthetic aperture radiometer, the system mass, volume, and hardware complexity is reduced and cost-effective. Only one internal noise source, matched load, is used for injection using noise re-radiation technique a small set of sub-Y receiver channels is calibrated. Detailed calibration scenario is discussed and simulation results about noise re­radiation effect are presented.

  • PDF

A Study on the Weight Tare of an Internal Balance Including Translation of the Initial Loads (초기하중 전이를 고려한 내장형 밸런스의 WEIGHT TARE 연구)

  • Oh, Se-Yoon;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.9
    • /
    • pp.9-17
    • /
    • 2003
  • In this paper, the weight tare calculation method including translation of initial loads is proposed to remove the internal balance component readings due to model weight. If the balance calibration equations are applied directly to the wind-on data without taking account these initial loads, then incorrect data will be obtained for all wind-on data calculations. The calculated model weights were compared with the actual model weights to verify the reliability of the proposed calculation technique. Also, discussions of the effects of the initial loads are given.

An Intercomparison of Counting Efficiency and the Performance of Two Whole-Body Counters According to the Type of Phantom

  • Pak, Minjung;Yoo, Jaeryong;Ha, Wi-Ho;Jin, Young-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.274-281
    • /
    • 2016
  • Background: Whole-body counters are widely used to evaluate internal contamination of the internal presence of gamma-emitting radionuclides. In internal dosimetry, it is a basic requirement that quality control procedures be applied to verify the reliability of the measured results. The implementation of intercomparison programs plays an important role in quality control, and the accuracy of the calibration and the reliability of the results should be verified through intercomparison. In this study, we evaluated the reliability of 2 whole-body counting systems using 2 calibration methods. Materials and Methods: In this study, 2 whole-body counters were calibrated using a reference male bottle manikin absorption (BOMAB) phantom and a Radiation Management Corporation (RMC-II) phantom. The reliability of the whole-body counting systems was evaluated by performing an intercomparison with International Atomic Energy Agencyto assess counting efficiency according to the type of the phantom. Results and Discussion: In the analysis of counting efficiency using the BOMAB phantom, the performance criteria of the counters were satisfied. The relative bias of activity for all radionuclides was -0.16 to 0.01 in the Fastscan and -0.01 to 0.03 in the Accuscan. However, when counting efficiency was analyzed using the RMC- II phantom, the relative bias of $^{241}Am$ activity was -0.49 in the Fastscan and 0.55 in the Accuscan, indicating that its performance criteria was not satisfactory. Conclusion: The intercomparison process demonstrated the reliability of whole-body counting systems calibrated with a BOMAB phantom. However, when the RMC-II phantom was used, the accuracy of measurements decreased for low-energy nuclides. Therefore, it appears that the RMC-II phantom should only be used for efficiency calibration for high-energy nuclides. Moreover, a novel phantom capable of matching the efficiency of the BOMAB phantom in low-energy nuclides should be developed.

Calibration Method of Plenoptic Camera using CCD Camera Model (CCD 카메라 모델을 이용한 플렌옵틱 카메라의 캘리브레이션 방법)

  • Kim, Song-Ran;Jeong, Min-Chang;Kang, Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.2
    • /
    • pp.261-269
    • /
    • 2018
  • This paper presents a convenient method to estimate the internal parameters of plenoptic camera using CCD(charge-coupled device) camera model. The images used for plenoptic camera calibration generally use the checkerboard pattern used in CCD camera calibration. Based on the CCD camera model, the determinant of the plenoptic camera model can be derived through the relationship with the plenoptic camera model. We formulate four equations that express the focal length, the principal point, the baseline, and distance between the virtual camera and the object. By performing a nonlinear optimization technique, we solve the equations to estimate the parameters. We compare the estimation results with the actual parameters and evaluate the reprojection error. Experimental results show that the MSE(mean square error) is 0.309 and estimation values are very close to actual values.