• Title/Summary/Keyword: internal bond test

Search Result 40, Processing Time 0.023 seconds

Finite element model for interlayer behavior of double skin steel-concrete-steel sandwich structure with corrugated-strip shear connectors

  • Yousefi, Mehdi;Ghalehnovi, Mansour
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.123-133
    • /
    • 2018
  • Steel-concrete-steel (SCS) sandwich composite structure with corrugated-strip connectors (CSC) has the potential to be used in buildings and offshore structures. In this structure, CSCs are used to bond steel face plates and concrete. To overcome executive problems, in the proposed system by the authors, shear connectors are one end welded as double skin composites. Hence, this system double skin with corrugated-strip connectors (DSCS) is named. In this paper, finite element model (FEM) of push-out test was presented for the basic component of DSCS. ABAQUS/Explicit solver in ABAQUS was used due to the geometrical complexity of the model, especially in the interaction of the shear connectors with concrete. In order that the explicit analysis has a quasi-static behavior with a proper approximation, the kinetic energy (ALLKE) did not exceed 5% to 10% of the internal energy (ALLIE) using mass-scaling. The FE analysis (FEA) was validated against those from the push-out tests in the previous work of the authors published in this journal. By comparing load-slip curves and failure modes, FEMs with suitable analysis speed were consistent with test results.

Other Changes in Bond Strength due to External Insulation Method (외단열 고정 방법에 따른 부착강도 변화)

  • Kim, Tae-Jun;Park, Wan-Goo;Park, Jin-Sang;Oh, Jung-Hwan;Bae, Ki-Sun;Oh, Sang Geun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.132-133
    • /
    • 2013
  • External Insulation Method is to place the insulation on the outside of concrete. External Insulation Method is better than Internal Insulation Method to the protection of structure. However, The phenomenon that External Insulation falling from the structure occurs frequently. Apply method of External Insulation is divided Wet Construction, Dry Construction and Wet & Dry Construction. The purpose of this study is to test Bonding Strength of External Insuation. Furthermore, on the basis of this study, External Insulation Method determines the effective development will be made.

  • PDF

Interface Characteristics of Ion Beam Mixed Cu/polyimide system

  • G.S.Chang;Jung, S.M.;Lee, Y.S.;Park, I.S.;Kang, H.J.;J.J.Woo;C.N.Whang
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.1-7
    • /
    • 1995
  • Cu(400$\AA$)/Polyimide has been mixed with 80 keV Ar+ and N2+from 1.0X1015ions/$\textrm{cm}^2$ to 2.0X1016 ions/$\textrm{cm}^2$. The changes of chemical bond and internal properties of sample are investigated by X-ray photoelectron spectroscopy(XPS). The quantitative adhesion strength is measured by using scratch test. The optimized mixing condition is that Cu/PI is irradiated with 80 keV N2+ at a dose of 1.0X1015 ions/$\textrm{cm}^2$, because N2+ ions can product more pyridine-like moiety, amide group, and tertiary amine moiety which are known as adesion promoters than Ar+.

  • PDF

Fundamental properties of repair mortar using CNT impregnated in porous material (다공성 소재에 함침된 CNT를 이용한 보수모르타르의 기초적 특성)

  • Kim, Young Min;Kwon, Hyun Woo;Lee, Gun Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.67-68
    • /
    • 2021
  • In this study, Repair mortar was prepared using CNT powder with improved dispersibility and its characteristics were analyzed. As a result of the experiment, the compressive strength and flexural strength were found to be at similar levels compared to Plain without CNT. In addition, as a result of the drying shrinkage test, it was found that the drying shrinkage amount was decreased due to the effect of CNT mixed into the porous material filling the internal pores of the repair mortar.. The Bond strength of the repair mortar was at a similar level regardless of whether CNT was added or not

  • PDF

In vitro study of Polymerization shrinkage-strain kinetics of dental resin cements (치과용 레진 시멘트의 중합 수축률 특성에 관한 연구)

  • Kim, Tae-Hoon;Yang, Jae-Ho;Lee, Jai-Bong;Han, Jung-Suk;Kim, Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • Purpose: The shrinkage of dental resin cement may cause several clinical problems such as distortion that may jeopardize the accurate fit to the prepared tooth and internal stress within the restorations. It is important to know the polymerization shrinkage-strain of dental resin cement to reduce clinical complications. The purpose of this study was to investigate the polymerization shrinkage-strain kinetics of six commercially available dental resin cements. Material and methods: Three self-cure resin cements (Fujicem, Superbond, M-bond) and three dual-cure resin cements (Maxcem, Panavia-F, Variolink II) were investigated. Time dependent polymerization shrinkage-strain kinetics of the materials were measured by the Bonded-disk method as a function of time at $23^{\circ}C$, with values particularly noted at 1, 5, 10, 30, 60, 120 min after mixing. Five recordings were taken for each materials. The data were analyzed with one-way ANOVA and Scheffe post hoc test at the significance level of 0.05. Results: Polymerization shrinkage-strain values were 3.72%, 4.19%, 4.13%, 2.44%, 7.57%, 2.90% for Fujicem, Maxcem, M bond, Panavia F, Superbond, Variolink II, respectively at 120 minutes after the start of mixing. Panavia F exhibited maximum polymerization shrinkage-strain values, but Superbond showed minimum polymerization shrinkage-strain values among the investigated materials (P < .05). There was no significant differences of shrinkage-strain value between Maxcem and M bond at 120 minutes after the start of mixing (P > .05). Most shrinkage of the resin cement materials investigated occurred in the first 30 minutes after the start of mixing. Conclusion: The onset of polymerization shrinkage of self-cure resin cements was slower than that of dual-cure resin cements after mixing, but the net shrinkage strain values of self-cure resin cements was higher than that of dual-cure resin cements at 120 minutes after mixing. Most shrinkage of the dental resin cements occurred in the first 30 minutes after mixing.

Predicting the Screw Withdrawal Load of Commercial Particleboard Manufactured in Korea (국내에서 생산된 파티클보드의 나사못 유지력 예측)

  • Cha, Jae Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.544-550
    • /
    • 2013
  • Tests were carried out on commercial particleboards manufactured in Korea to evaluate and modify formulas which had previously been developed to predict the holding loads of screw on the face and edge of specimen. Screw sizes were No. 6, 8 and 10 used in this study. The withdrawal loads of screws were developed to predict as a function of screw diameter, depth of penetration, specific gravity and IB of particleboard. Predicted equations were fitted to the test results of different length of No. 8 screws. Results of tests indicate that IB is a better predictor of holding loads on the face of particleboard than SG. On the other hand, SG is a good indicator of holding load on the edge of particleboard.

Damage and fracture processes of concrete using acoustic emission parameters

  • Fan, Xiangqian;Hu, Shaowei;Lu, Jun
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.267-278
    • /
    • 2016
  • In order to observe the internal damage of concrete in real time, we introduced acoustic emission nondestructive detecting technology into a series of fracture tests; the test results revealed the whole process that concrete undergoes when it sustains damage that leads to failure, according to the change rules of the acoustic emission parameters. The results showed that both the initiation and unstable loads can be accurately determined using the abrupt change of the acoustic emission rate curves and the turning point of the acoustic emission parameters' accumulative curves. The whole process, from damage to failure, includes five phases, beginning with damage, such as cracking, a stable crack growth process, a critical unstable stage, and unstable propagation. The brittle fracture characteristics of concrete change when steel bars are joined, because the steel bars and the concrete structure bond, which causes an increase in the acoustic emission signals within the fracture process of the reinforced concrete. The unstable propagation stage is also extended. Our research results provide a valid methodology and technical explanations, which can help researchers to monitor the cracking process of concrete structures, in real time, during actual projects.

Characteristics of Particleboards Made from Three-months-old Domestics Bamboo (Phyllostachys nigra var henonis Stapf) (3개월생 분죽을 이용한 대나무 파티클보드의 특성)

  • Lee, Hwa Hyoung;Han, Ki Sun;Kim, Gwan Eui
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.11-17
    • /
    • 2002
  • This study was performed to determine the characteristics of particleboard made from three-months-old bamboo, (Phyllostachys nigra var henonis Stapf) grown in Damyang district, Korea. Total 60 particleboards were manufactured with 1% of liquid wax emulsion using urea-formaldehyde resin content 9%,11% and 13%, respectively. The particle boards consisted of three layers, in which face layer had the same proportion of a weight 25% of the particleboard each. And the core layer had a weight 50% of the board. The core layer and face layer had the particle dimension passing 6 mesh (3.35 mm), 12 mesh (1.70 mm), respectively. The study was carried out to determine the effect of the growing time of 3 months and 3 years on particleboard properties. The physical and mechanical properties of boards were measured and compared to the Korean standard (KS) requirements of particle boards. The results were as follows; 1. The longer the growing time, the higher the density of bamboo. Density of the upper part of bamboo showed higher than that of lower part. 2. Density and moisture content of the two particle boards did not show significant differences. Three-months-old bamboo particleboard gave higher thickness swelling than three-years-old bamboo particleboard. Bamboo particleboard passed the thickness swelling test of KS. 3. The static bending and internal bond strength of three-months-old bamboo particleboard were higher than those of three-years-old bamboo. Increase of resin contents in bamboo particleboard increased bending and internal bond strength, proportionally. Strength properties of bamboo particle board were above KS. 4. Formaldehyde emission of all the bamboo particleboards satisfied E2 level (5.0 mg/L) of KS F 3104.

Pecking Order Prediction of Debt Changes and Its Implication for the Retail Firm (부채변화에 대한 순서이론 예측력 검정 및 유통기업의 함의)

  • Lee, Jeong-Hwan;Liu, Won-Suk
    • Journal of Distribution Science
    • /
    • v.13 no.10
    • /
    • pp.73-82
    • /
    • 2015
  • Purpose - This paper aims to investigate whether information asymmetry could explain capital structures in Korean corporations. According to Myers (1984), firms prefer internal funding to external financing due to the costs associated with information asymmetry. When external financing is necessary, firms prefer to issue debt rather than equity by the same reasoning. Since Shyam-Sunder and Myers (1999), numerous studies continue to debate the validity of the theory. In this paper, we show how the theory depends on assumptions and incorporated variables. We hope our investigation can provide helpful implications regarding capital structure, information asymmetry, and other firm characteristics. Specifically, our empirical results are complementary to the analysis of Son and Lee's (2015), a recent study that examines the pecking order theory prediction for Korean retail firms. Research design, data, and methodology - We test empirical models that are some variants of model used in Shyam-Sunder and Myers (1999). The financial and accounting data are provided by WISEfn for the firms listed on the KOSPI during 1990 to 2013. Bond ratings are supplied by the Korea Investor Service (KIS). We take into account the heterogeneity in debt capacity; a firm's debt capacity is measured by using the method of Lemmon and Zender (2010) based on its bond ratings. Finally, we estimate empirical models suggested by Shyam-Sunder and Myers (1999), Frank and Goyal (2003), and Lemmon and Zender (2010). Results - First, we find that Shyam-Sunder and Myers' (1999) prediction fails to explain total debt changes of Korean firms. Second, we find a non-monotonic relationship between total debt changes and financial deficits with respect to debt capacity. This contradicts the prediction of Lemmon and Zender (2010) that argues the pecking order theory survives with a monotonically increasing relationship. Third, we estimate a negative correlation coefficient between financial deficit and current debt changes. The result is the complete opposite of the prediction of Lemmon and Zender (2010). Finally, we also confirm the non-monotonic relationship between non-current debt changes and financial deficits with respect to debt capacity. Yet, the slope of coefficient is smaller than that of total debt change case. Indeed, the results are, to some extent, consistent with the prediction of pecking order theory, if we exclude the mid-debt capacity firms. Conclusions - Our empirical results complementary to the analysis of Son and Lee (2015), a recent study focusing on capital structure in Korean retail firms; their paper suggests interesting topics regarding capital structure, information asymmetry, and other firm characteristics in Korean corporations. Contrary to Son and Lee (2015), our results show that total debt changes and current debt changes are inconsistent with the prediction of Shyam-Sunder and Myers (1999). However, similar to Son and Lee (2015), non-current debt changes are consistent with the pecking order prediction, in the case of excluding the mid-level debt capacity firms. This contrast allows us to infer that industry characteristics significantly affect the validity of the pecking order prediction. Further studies are needed to analyze the economics behind this phenomenon, which is beyond the scope of our paper. In addition, the estimation bias potentially matters regarding the firm-level debt capacity calculation. We also reserve this topic for future research.

QSPR analysis for predicting heat of sublimation of organic compounds (유기화합물의 승화열 예측을 위한 QSPR분석)

  • Park, Yu Sun;Lee, Jong Hyuk;Park, Han Woong;Lee, Sung Kwang
    • Analytical Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.187-195
    • /
    • 2015
  • The heat of sublimation (HOS) is an essential parameter used to resolve environmental problems in the transfer of organic contaminants to the atmosphere and to assess the risk of toxic chemicals. The experimental measurement of the heat of sublimation is time-consuming, expensive, and complicated. In this study, quantitative structural property relationships (QSPR) were used to develop a simple and predictive model for measuring the heat of sublimation of organic compounds. The population-based forward selection method was applied to select an informative subset of descriptors of learning algorithms, such as by using multiple linear regression (MLR) and the support vector machine (SVM) method. Each individual model and consensus model was evaluated by internal validation using the bootstrap method and y-randomization. The predictions of the performance of the external test set were improved by considering their applicability to the domain. Based on the results of the MLR model, we showed that the heat of sublimation was related to dispersion, H-bond, electrostatic forces, and the dipole-dipole interaction between inter-molecules.