Browse > Article
http://dx.doi.org/10.5806/AST.2015.28.3.187

QSPR analysis for predicting heat of sublimation of organic compounds  

Park, Yu Sun (Department of Chemistry, Hannam University)
Lee, Jong Hyuk (Department of Chemistry, Hannam University)
Park, Han Woong (Department of Chemistry, Hannam University)
Lee, Sung Kwang (Department of Chemistry, Hannam University)
Publication Information
Analytical Science and Technology / v.28, no.3, 2015 , pp. 187-195 More about this Journal
Abstract
The heat of sublimation (HOS) is an essential parameter used to resolve environmental problems in the transfer of organic contaminants to the atmosphere and to assess the risk of toxic chemicals. The experimental measurement of the heat of sublimation is time-consuming, expensive, and complicated. In this study, quantitative structural property relationships (QSPR) were used to develop a simple and predictive model for measuring the heat of sublimation of organic compounds. The population-based forward selection method was applied to select an informative subset of descriptors of learning algorithms, such as by using multiple linear regression (MLR) and the support vector machine (SVM) method. Each individual model and consensus model was evaluated by internal validation using the bootstrap method and y-randomization. The predictions of the performance of the external test set were improved by considering their applicability to the domain. Based on the results of the MLR model, we showed that the heat of sublimation was related to dispersion, H-bond, electrostatic forces, and the dipole-dipole interaction between inter-molecules.
Keywords
Heat of sublimation; QSPR; MLR; SVM; consensus model;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 W. Acree and J. S. Chickos, J. Phys. Chem. Ref. Data, 39(4), 043101 (2010).   DOI   ScienceOn
2 M. A. V. Roux, M. Temprado, J. S. Chickos and Y. Nagano, J. Phys. Chem. Ref. Data, 37(4), 1855-1996 (2008).   DOI   ScienceOn
3 PreADMET Ver.2.0.2.0, BMDRC: Seoul Korea, 2007.

4 G. Schneider, W. Neidhart, T. Giller and G. Schmid, Angew. Chem. Int. Ed. Engl., 38(19), 2894-2896 (1999).   DOI
5 RapidMiner Ver.5.3.012, Rapid-I: Stockumer, Germany.

6 C. Cortes and V. Vapnik, Mach. Learn., 20(3), 273-297 (1995).   DOI
7 B. Schölkopf, A. J. Smola, R. C. Williamson,and P. L. Bartlett, Neural Comput., 12(5), 1207-1245 (2000).   DOI   ScienceOn
8 E. H. Jean, J. H. J. Park, Jin Hee and S. K. Lee, Anal. Sci. Technol., 24(6), 533-543 (2011).   DOI   ScienceOn
9 I. S. Song, J. Y. Cha and S. K. Lee, Anal. Sci. Technol., 24(6), 544-555 (2011).   DOI   ScienceOn
10 A. Tropsha, P. Gramatica and V. K. Gombar, QSAR Combi. Sci., 22(1), 69-77 (2003).   DOI   ScienceOn
11 P. Politzer, Y. Ma, P. Lane and M. C. Concha, Int. J. Quantum Chem, 105(4), 341-347 (2005).   DOI   ScienceOn
12 F. Gharagheizi, P. Ilani-Kashkouli, W. E. Acree, A. H. Mohammadi and D. Ramjugernath, Fluid Phase Equilib., 354, 265-285 (2013).   DOI   ScienceOn
13 F. Gharagheizi, Thermochim. Acta, 469(1-2), 8-11 (2008).   DOI   ScienceOn
14 K. Nakajoh, E. Shibata, T. Todoroki, A. Ohara, K. Nishizawa and T. Nakamura, Environ. Toxicol. Chem., 25(2), 327-336 (2006).   DOI   ScienceOn