• Title/Summary/Keyword: intermediate Jacobian

Search Result 6, Processing Time 0.019 seconds

An Euler Parameter Updating Method for Multibody Kinematics and Dynamics (다물체의 기구해석 및 동적거동해석을 위한 오일러 매개변수의 교정방법)

  • 김성주;배대성;최창곤;양성모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.9-17
    • /
    • 1996
  • This paper develops a sequential updating method of the Euler parameter generalized coordinates for the machine kinematics and dynamics, The Newton's method is slightly modified so as to utilize the Jacobian matrix with respect to the virtual rotation instead of this with repect to the Euler parameters. An intermediate variable is introduced and the modified Newton's method solves for the variable first. Relational equation of the intermediate variable is then solved for the Euler parameters. The solution process is carried out efficiently by symoblic inversion of the relational equation of the intermediate variable and the iteration equation of the Euler parameter normalization constraint. The proposed method is applied to a kinematic and dynamic analysis with the Generalized Coordinate Partitioning method. Covergence analysis is performed to guarantee the local convergence of the proposed method. To demonstrate the validity and practicalism of the proposed method, kinematic analysis of a motion base system and dynamic analysis of a vehicle are carried out.

  • PDF

Design of Parallel Typed Walking Robot for Improvement of Walking Space and Stability (보행공간과 안정성 향상을 위한 병렬기구 보행로봇의 설계)

  • Kim, Chi-Hyo;Park, Kun-Woo;Kim, Tae-Sung;Lee, Min-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.310-318
    • /
    • 2008
  • This paper presents a parallel typed walking robot to improve walking space and stability region. The robot is designed by inserting an intermediate mechanism between upper leg mechanism and lower leg mechanism. The leg mechanism is composed of three legs and base, which form a parallel mechanism with ground. Seven different types of walking robot are invented by combining the leg mechanisms and an intermediate mechanism. Topology is applied to design the leg mechanism. A motor vector is adopted to determine Jacobian and a wrench vector is used to analyze dynamics of the robot. We explore the stability region of the robot from the reaction force of legs and compute ZMP including the holding force to contact the foot to a wall. This investigates a walking stability when the robot walks on the ground as well as on the wall. We examine the walking space generated by support legs and by swing legs. The robot has both a large positional walking space and a large orientational walking space so that it can climb from a floor up to a wall.

Modeling of blend surfaces by Non Uniform B-spline surface patches (Non Uniform B-spline(NUB) 곡면에 의한 블랜드 곡면의 모델링)

  • Yoo, Woo-Sik;Jeong, Hoi-Min
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.2
    • /
    • pp.95-100
    • /
    • 2000
  • Presented in this paper is a scheme for constructing ball rolling blends of a non-uniform B-spline surface(NUBS) patches. Ball rolling blending is a popular technique for blending between parametric surfaces. Along the "common edge" of a pair of "base surfaces" to be blended, a sequence of "ball positions" is sampled. The radius of the ball may vary along the line. At each sampling point, a ball center point and a pair of ball contact points are computed by applying a Jacobian inversion method. Using ball contact points, the constructing scheme of blend NUBS patches consists three steps; 1) determination of intermediate control vertices; 2) determination of boundary vectors; 3) determination of B-spline control vertices. The proposed blending scheme has been tested in a Omega CAM system and found to be working satisfactorily.

  • PDF

A modified JFNK with line search method for solving k-eigenvalue neutronics problems with thermal-hydraulics feedback

  • Lixun Liu;Han Zhang;Yingjie Wu;Baokun Liu;Jiong Guo;Fu Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.310-323
    • /
    • 2023
  • The k-eigenvalue neutronics/thermal-hydraulics coupling calculation is a key issue for reactor design and analysis. Jacobian-free Newton-Krylov (JFNK) method, featured with super-linear convergence rate and high efficiency, has been attracting more and more attention to solve the multi-physics coupling problem. However, it may converge to the high-order eigenmode because of the multiple solutions nature of the k-eigenvalue form of multi-physics coupling issue. Based on our previous work, a modified JFNK with a line search method is proposed in this work, which can find the fundamental eigenmode together with thermal-hydraulics feedback in a wide range of initial values. In detail, the existing modified JFNK method is combined with the line search strategy, so that the intermediate iterative solution can avoid a sudden divergence and be adjusted into a convergence basin smoothly. Two simplified 2-D homogeneous reactor models, a PWR model, and an HTR model, are utilized to evaluate the performance of the newly proposed JFNK method. The results show that the performance of this proposed JFNK is more robust than the existing JFNK-based methods.

Efficient Intermediate Joint Estimation using the UKF based on the Numerical Inverse Kinematics (수치적인 역운동학 기반 UKF를 이용한 효율적인 중간 관절 추정)

  • Seo, Yung-Ho;Lee, Jun-Sung;Lee, Chil-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.39-47
    • /
    • 2010
  • A research of image-based articulated pose estimation has some problems such as detection of human feature, precise pose estimation, and real-time performance. In particular, various methods are currently presented for recovering many joints of human body. We propose the novel numerical inverse kinematics improved with the UKF(unscented Kalman filter) in order to estimate the human pose in real-time. An existing numerical inverse kinematics is required many iterations for solving the optimal estimation and has some problems such as the singularity of jacobian matrix and a local minima. To solve these problems, we combine the UKF as a tool for optimal state estimation with the numerical inverse kinematics. Combining the solution of the numerical inverse kinematics with the sampling based UKF provides the stability and rapid convergence to optimal estimate. In order to estimate the human pose, we extract the interesting human body using both background subtraction and skin color detection algorithm. We localize its 3D position with the camera geometry. Next, through we use the UKF based numerical inverse kinematics, we generate the intermediate joints that are not detect from the images. Proposed method complements the defect of numerical inverse kinematics such as a computational complexity and an accuracy of estimation.