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A SIMPLE PROOF OF THE NON-RATIONALITY

OF A GENERAL QUARTIC DOUBLE SOLID

Yuri Prokhorov

Abstract. The aim of this short note is to give a simple proof of the

non-rationality of the double cover of the three-dimensional projective
space branched over a sufficiently general quartic.

1. Introduction

Throughout this work the ground field is supposed to be the complex number
field C.

A quartic double solid is a projective variety represented as a the double
cover of P3 branched along a smooth quartic. It is known that quartic double
solids are unirational but not rational [2], [8], [12], [14]. Moreover, a general
quartic double solid is not stably rational [15]. There are also a lot of results
related to rationality problems of singular quartic double solids see e.g. [1], [7],
[5], [6], [10], [13].

The main result of this note is to give a simple proof of the following

1.1. Theorem. Let X be the quartic double solid branched over the surface

x31x2 + x32x3 + x33x4 + x34x1 = 0.

Then the intermediate Jacobian J(X) is not a sum of Jacobians of curves. As
a consequence, X is not rational.

1.2. Corollary. A general quartic double solid is not rational.

Our proof uses methods of A. Beauville [3], [4] and Yu. Zarhin [16]. The ba-
sic idea is to find a sufficiently symmetric variety in the family. Then the action
of the automorphism group provides a good tool to prove non-decomposability
the intermediate Jacobian into a sum of Jacobians of curves by using purely
group-theoretic techniques. Since the Jacobians and their sums form a closed
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subvariety of the moduli space of principally polarized abelian varieties, this
shows that a general quartic double solid is not rational1.

2. Preliminaries

2.1. Notation. We use standard group-theoretic notation: if G is a group,
then z(G) denotes its center, [G,G] its derived subgroup, and Sylp(G) its (some)
Sylow p-subgroup. By ζm we denote a primitive m-th root of unity. The group
generated by elements α1,α2, . . . is denoted by 〈α1,α2, . . . 〉.

2.2. LetX be a three-dimensional smooth projective variety withH3(X,OX) =
0 and let J(X) be its intermediate Jacobian regarded as a principally polarized
abelian variety (see [9]). Then J(X) can be written, uniquely up to permuta-
tions, as a direct sum

(2.2.1) J(X) = A1 ⊕ · · · ⊕An,

where A1, . . . , Ap are indecomposable principally polarized abelian varieties
(see [9, Corollary 3.23]). This decomposition induces a decomposition of tan-
gent spaces

(2.2.2) T0,J(X) = T0,A1
⊕ · · · ⊕ T0,An

.

Now assume that X is acted on by a finite group G. Then G naturally acts on
J(X) and T0,J(X) preserving decompositions (2.2.1) and (2.2.2).

2.3. Lemma. Let C be a curve of genus g ≥ 2 and let Γ ⊂ Aut(C) be a
subgroup of order 2k · 5 whose Sylow 5-subgroup Syl5(Γ) is normal in Γ. Then
the following assertions hold:

(i) if k = 2, then g ≥ 3,
(ii) if k = 4, then g ≥ 6,

(iii) if k = 5, then g ≥ 11.

Proof. Let C ′ := C/Syl5(Γ) and g′ := g(C ′). Let P1, . . . , Pn ∈ C ′ be all the
branch points. By Hurwitz’s formula

g + 4 = 5g′ + 2n.

The group Γ′ := Γ/Syl5(Γ) of order 2k faithfully acts on C ′ and permutes
P1, . . . , Pn. (i) Assume that k = g = 2. Then g′ = 0, C ′ ' P1, and n = 3.
At least one of the points P1, P2, P3, say P1, must be fixed by Γ′. But then
Γ′ must be cyclic (of order 4) and it cannot leave the set {P1, P2, P3} ⊂ P1

invariant. This proves (i).
(ii) Assume that k = 4 and g ≤ 5. Then g′ ≤ 1. If g′ = 0, then n ∈ {3, 4}

and the group Γ′ of order 16 acts on C ′ ' P1 so that the set {P1, . . . , Pn} is
invariant. This is impossible. If g′ = 1, then, as above, Γ′ acts on an elliptic

1Recently V. Przyjalkowski and C. Shramov used similar method to prove non-rationality

of some double quadrics [11].
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curve C ′ leaving a non-empty set of n ≤ 2 points is invariant. This is again
impossible and the contradiction proves (ii).

(iii) Finally, let k = 5 and g ≤ 10. Then g′ ≤ 2 and n ≤ 7. If g′ ≤ 1, then we
get a contradiction as above. Let g′ = 2, let C ′ → P1 the canonical map, and
let Γ′′ ⊂ Aut(P1) be the image of Γ′. Since Γ′′ is a 2-subgroup in Aut(P1), it
is either cyclic or dihedral. On the other hand, Γ′′ permutes the branch points
Q1, . . . , Q6 ∈ P1 so that the stabilizer of each Qi is a subgroup in Γ′′ of index
≤ 4. Clearly, this is impossible. �

3. Symmetric quartic double solid

3.1. LetX be the quartic double solid as in Theorem 1.1. ThenX is isomorphic
to a hypersurface given by

(3.1.1) y2 + x31x2 + x32x3 + x33x4 + x34x1 = 0,

in the weighted projective space P := P(14, 2), where x1, . . . , x4, y are homoge-
neous coordinates with deg xi = 1, deg y = 2.

Let α be the automorphism of X induced by the diagonal matrix

diag(1, ζ3840 , ζ
4
40, ζ

26
40 ; ζ−140 )

and let β be the cyclic permutation (1, 2, 3, 4) of coordinates x1, x2, x3, x4. Since

βαβ−1 = diag(ζ2640 , 1, ζ
38
40 , ζ

4
40; ζ−140 ) = diag(1, ζ1440 , ζ

12
40 , ζ

18
40 ; ζ2740 ) = α13,

these automorphisms generate the group

G = 〈α, β | α40 = β4 = 1, βαβ−1 = α13〉 ⊂ Aut(X), G ' Z/40 o Z/4.

3.2. Lemma. Let G be as above. Then we have

(i) z(G) = 〈α10〉 and [G,G] = 〈α4〉,
(ii) the Sylow 5-subgroup Syl5(G) is normal,

(iii) any subgroup in G of index 10 contains z(G).

Proof. (i) can be proved by direct computations and (ii) is obvious because
Syl5(G) ⊂ 〈α〉. To prove (iii) consider a subgroup G′ ⊂ G of index 10. The
intersection G′ ∩〈α〉 is of index ≤ 4 in G′. Hence G′ ∩〈α〉 is a 2-group of order
≥ 4 and so α10 ∈ G′ ∩ 〈α〉. �

3.3. Lemma (cf. [14, 0.1(b)]). There exists a natural exact sequence

0→ H2(X,Ω1
X)→ H0(X,−KX)∨−→C→ 0.

Proof. Since X is contained in the smooth locus of P and OP(X) = OP(4), we
have the following exact sequence

0 −→ OX(−4) −→ Ω1
P|X −→ Ω1

X −→ 0,

and so

H2(X,Ω1
P|X)→ H2(X,Ω1

X)→ H0(X,OX(2))∨ → H3(X,Ω1
P|X)→ 0.
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The Euler exact sequence for P = P(14, 2) has the form

0 −→ Ω1
P −→ OP(−2)⊕ OP(−1)⊕4 −→ OP −→ 0.

Restricting it to X we obtain H2(X,Ω1
P|X) = 0 and H3(X,Ω1

P|X) = C. �

3.4. Lemma. We have the following decomposition of G-modules:

T0,J(X) = V4 ⊕ V ′4 ⊕ V2,

where V4, V ′4 are irreducible faithful 4-dimensional representations and V2 is an
irreducible 2-dimensional representation with kernel 〈α8, β2〉. Moreover, z(G)
acts on V4 and V ′4 via different characters.

Proof. Clearly, T0,J(X) ' H0(J(X),ΩJ(X))
∨ ' H2(X,Ω1

X) and by Lemma 3.3

we have an injection T0,J(X) ↪→ H0(X,−KX)∨. By the adjunction formula
KX = (KP +X)|X and so

H0(X,−KX) ' H0(P,OP(−KP −X)).

Consider the affine open subset U := {x1x2x3x4 6= 0}. Then v = y/x21 and
zi = xi/x1, i = 2, 3, 4 are affine coordinates in U ⊂ {x1 6= 0} ' A4. Let ω be
the 3-form

ω :=
dz2 ∧ dz3 ∧ dz4

∂φ/∂v
=
dz2 ∧ dz3 ∧ dz4

2v
,

where φ = v2 + z2 + z32z3 + z33z4 + z34 is the equation of X in U . It is easy to
check that for any polynomial ψ(z2, z3, z4) of degree ≤ 2 the element ψ ·ω−1
extends to a section of H0(X,−KX). Thus we have

H0(X,−KX) ' {ψ(z2, z3, z4) ·ω−1 | degψ ≤ 2}.

It is easy to check that the forms
(3.4.1)
ω−1, z22ω

−1, z23ω
−1, z24ω

−1, z2ω
−1, z2z3ω

−1, z3z4ω
−1, z4ω

−1, z3ω
−1, z2z4ω

−1

are eigenvectors for α and β permutes them. Clearly, the following subspaces

W4 = 〈ω−1, z22ω−1, z23ω−1, z24ω−1〉,
W ′4 = 〈z2ω−1, z2z3ω−1, z3z4ω−1, z4ω−1〉,
W2 = 〈z3ω−1, z2z4ω−1〉

are G-invariant in H0(X,−KX). Moreover, in the basis (3.4.1) the element α
acts diagonally:

(3.4.2)

α|W4
= diag(ζ1140 , ζ

7
40, ζ

19
40 , ζ

23
40 ),

α|W ′
4

= diag(ζ940, ζ
13
40 , ζ40, ζ

37
40 ),

α|W2
= diag(ζ38 , ζ

7
8 ),

and β acts on each of these subspaces permuting the eigenspaces of α cyclically.
Thus α10 acts on W4 (resp., W ′4) via scalar multiplication by ζ34 (resp., ζ4). Put
V4 := W∨4 , V ′4 := W ′∨4 , V2 := W∨2 . �
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4. Proof of Theorem 1.1

4.1. Assume to the contrary to Theorem 1.1 that J(X) is a direct sum of
Jacobians of curves, i.e., in the unique decomposition (2.2.1) we have Ai '
J(Ci), where Ci is a curve of genus ≥ 1 and J(Ci) is its Jacobian regarded as
a principally polarized abelian variety. Let Gi be the stabilizer of Ai. There
is a natural homomorphism ςi : Gi → Aut(Ci). By the Torelli theorem ςi is
injective and we have

(4.1.1) Aut(J(Ci)) '

{
Aut(Ci) if Ci is hyperelliptic,

Aut(Ci)× {±1} otherwise.

Let us analyze the action of G on the set {A1, . . . , An}. Up to renumbering
we may assume that subvarieties A1, . . . , Am form one G-orbit (however, the
choice of this orbit is not unique in general). Clearly, m ∈ {1, 2, 4, 5, 8, 10}.
Denote the stabilizer of Ai by Gi. Consider the possibilities for m case by case.

4.2. Case: m = 1, that is, A1 ⊂ J(X) is a G-invariant subvariety. Since
z(G) = 〈α10〉, the only normal subgroup of order 2 in G is 〈α20〉. Hence
G cannot be decomposed as a direct product of groups of orders 2 and 80
(otherwise the order of α would be 20). If the action of G on A1 = J(C1) is
faithful, then by (4.1.1) so is the corresponding action on C1. So, the curve
C1 of genus ≤ 10 admits faithful action of the group G of order 25 · 5. This
contradicts Lemma 2.3(iii). Therefore the induced representation on T0,A1 is
not faithful. By Lemma 3.4 T0,J(C1) = V2. In this case g(C1) = 2 and the

action of G on J(C1) induces a faithful action of the group Ḡ := G/〈α8, β2〉 of
order 16. Since C1 is hyperelliptic, Ḡ is contained in Aut(C1). If Ḡ contains the
hyperelliptic involution τ , then τ generates a normal subgroup of order 2. In
this case 〈τ〉 = [Ḡ, Ḡ] and Ḡ/〈τ〉 is an abelian non-cyclic group of order 8. But
such a group cannot act faithfully on C1/〈τ〉 ' P1. Thus Ḡ does not contain
the hyperelliptic involution. In this case the image of the induced action of
Ḡ on canonical sections H0(C1,OC1

(KC1
)) does not contain scalar matrices.

Hence this representation is reducible and so it is trivial on [Ḡ, Ḡ]. On the
other hand, the action of Aut(C1) on H0(C1,OC1(KC1)) must be faithful a
contradiction.

From now on we may assume that the decomposition (2.2.1) contains no
G-invariant summands.

4.3. Case: m = 5. The subspace T0,A1
⊕ · · · ⊕ T0,A5

⊂ T0,J(X) is a G-
invariant of dimension 5 or 10. On the other hand, T0,J(X) contains no invariant
subspaces of dimension 5 by Lemma 3.4. Hence, T0,A1 ⊕ · · ·⊕T0,A5 = T0,J(X),

dimAi = 2, and J(X) = ⊕5
i=1Ai. The stabilizer Gi ⊂ G is a Sylow 2-subgroup

that faithfully acts on Ci (because Ci is hyperelliptic, see (4.1.1)). Further, Gi

permutes the Weierstrass points P1, . . . , P6 ∈ Ci. Hence a subgroup G′i ⊂ Gi

of index 2 fixes one of them. In this situation, G′i must be cyclic. On the other
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hand, it is easy to see that G does not contain any elements of order 16, a
contradiction.

4.4. Case: m = 10. Then A1, . . . , A10 are elliptic curves and Gi ⊂ G is a
subgroup of index 10. By Lemma 3.2 each Gi contains z(G). Clearly, z(G) acts
on T0,Ai via the same character. Since the subspaces T0,Ai generate T0,J(X),
the group z(G) acts on T0,J(X) via scalar multiplication. This contradicts
Lemma 3.4.

4.5. Case: m = 8. Then A1, . . . , A8 are elliptic curves and the stabilizer G1 ⊂
G is of order 20. In particular, the Sylow 5-subgroup Syl5(G) is contained in G1.
Since Syl5(G) is normal in G, we have Syl5(G) ⊂ Gi for i = 1, . . . , 8. Since the
automorphism group of an elliptic curve contains no order 5 elements, Syl5(G)
acts trivially on Ai. Therefore, Syl5(G) acts trivially on the 8-dimensional
G-invariant subspace T0,A1

⊕ · · · ⊕ T0,A8
. This contradicts Lemma 3.4.

4.6. Case: m = 4. The intersection G1 ∩ 〈α〉 is a subgroup of index ≤ 4 in
both G1 and 〈α〉. Hence, G1 3 α4 and so G1 ⊃ [G,G]. In particular, G1 is
normal and G1 = · · · = G4. If dimA1 = 1, then the element α8 of order 5 must
act trivially on elliptic curves Ai ∈ 0, i = 1, . . . , 4. Therefore, α8 acts trivially
on the 4-dimensional space T0,A1

⊕ · · · ⊕ T0,A4
. This contradicts Lemma 3.4.

Thus dimA1 = 2. Then T0,A1
⊕ · · · ⊕ T0,A4

= V4 ⊕ V ′4 . An eigenvalue of
α on T0,A1 ⊕ · · · ⊕ T0,A4 must be a primitive 40-th root of unity (see (3.4.2)).
Hence the group G1 ∩ 〈α〉 acts faithfully on T0,A1 and C1 (see (4.1.1)). By
Lemma 2.3(i) G1 ∩ 〈α〉 is of order 10, i.e., G1 ∩ 〈α〉 = 〈α4〉 and the kernel
N := ker(G1 → Aut(C1)) is of order 4. Thus G1 = 〈α4〉×N . In particular, G1

is abelian. But then the centralizer C(α8) of α8 contains N and 〈α〉. Therefore,
C(α8) = G and α8 ∈ z(G). This contradicts Lemma 3.2(i).

Thus we have excluded the cases m = 1, 4, 5, 8, 10. The only remaining
possibility is that all the orbits of G on {Ai} are of cardinality 2.

4.7. Case: m = 2. Then dimA1 ≤ 5 and G1 is a group of order 80. By replac-
ing the orbit {A1, A2} with another one we may assume that T0,A1

⊕T0,A2
6⊂ V2

and so T0,A1
⊕T0,A2

coincides with either V4, V ′4 , or V4 ⊕ V ′4 . In particular,
g(C1) ≥ 2. Clearly, G1 ∩ 〈α〉 is of order 40 or 20. Hence, α2 ∈ G1 and so the
group G1 cannot be decomposed as a direct product G1 = 〈α20〉 ×H. By the
Torelli theorem G1 faithfully acts on C1. This contradicts Lemma 2.3(ii).

Proof of Theorem 1.1 is now complete.

Proof of Corollary 1.2. The Jacobians and their sums form a closed subvariety
of the moduli space of principally polarized abelian varieties. By Theorem
1.1, in our case, this subvariety does not contain the subvariety formed by
Jacobians of quartic double solids. Therefore a general quartic double solid is
not rational. �
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